1994 COMMERCIAL RETROFIT PROGRAM EVALUATION OF LIGHTING TECHNOLOGIES

FINAL IMPACT EVALUATION REPORT

Submitted to
Elsia Galawish
Market Planning \& Research
Pacific Gas \& Electric Company
123 Mission Street, Room 2437
San Francisco, CA 94177

Prepared by
Quantum Consulting Inc.
2030 Addison Street
Berkeley, CA 94704

P696.321
February 1996

1994 COMMERCIAL RETROFIT PROGRAM EVALUATION OF LIGHTING TECHNOLOGIES

FINAL IMPACT EVALUATION REPORT

Prepared by

QuAntum Consulting inc.
2030 Addison Street
Berkeley, CA 94704

Principal Investigators
Robert Uhlaner
Timothy Caulfield
Joan Mancuso
Bing Xiao
Kris Bradley
Sam Shrauger
Michael Oing

February 1996

CONTENTS

Section Page
1 Executive Summary 1-1
1.1 Evaluation Summary 1-1
1.2 Major Findings 1-5
1.3 Major Recommendations 1-5
2 Introduction 2-1
2.1 The Retrofit Express Program 2-1
2.2 The Customized Incentives Program 2-2
2.3 Evaluation Overview 2-2
2.4 Report Layout 2-4
3 Methodology 3-1
3.1 Integrated Evaluation Approach 3-1
3.2 Engineering Analysis 3-9
3.3 Billing Regression Analysis 3-21
3.4 Net-to-Gross Analysis 3-35
4 Evaluation Results Summaries 4-1
4.1 Gross Energy Impact Results 4-1
4.2 Net to Gross Adjustments 4-4
4.3 Net Impacts 4-6
4.4 Realization Rates 4-9
4.5 Overview of Realization Rates 4-19
4.6 Overview of Realization Rates 4-20
5 Recommendations 5-1
5.1 Evaluation Methods 5-1
5.2 Program Design 5-2
5.3 Protocols 5-3

LIST OF APPENDICES

Appendix
A Sample Design Protocols
B Engineering Detailed Computational Methods
C Detailed Statistical Impact Analysis Approach and Results
D Final Participants Telephone Survey
E Final Nonparticipants Telephone Survey
F Final Participants On-site Instrument
G Final Nonparticipants On-site Instrument
H Participants Telephone Survey Response Frequencies
I Nonparticipants Telephone Survey Response Frequencies
J Purchase Decision Logistic Regression Model
K Gross Energy and Demand Impacts by Costing PeriodL Ex Ante Net-to-Gross RatiosM Commercial Refusal Comments
N Nonparticipant Refusal Comments

LIST OF EXHIBITS

Exhibit Page
1-1 Summary of Gross Evaluation Results Commercial Indoor and Outdoor Lighting Applications 1-3
1-2 Summary of Net Evaluation Results Commercial Indoor and Outdoor Lighting Applications 1-4
3-1 Nested Sample Design Approach 3-4
3-2 Method for Estimating Demand Impacts 3-5
3-3 Method for Estimating Energy Impacts 3-7
3-4 Derivation of Engineering Estimates for Use in Billing Regression Analysis 3-10
3-5 Engineering Estimates of Gross Demand Impacts 3-11
3-6 Engineering Estimates of Gross Energy Impacts 3-13
3-7 Comparison of Segmentation by Technology 3-15
3-8 Operating Hours and Operating Factors for Engineering Models (Sources Used to Determine Each Estimate) 3-17
3-9 Estimate of Cooling Benefit 3-19
3-10 Estimate of Heating Increase Penalty (Electric Heating Only) 3-20
3-11 Telephone Survey Sample Distribution by Program, End Use and Business Type 3-26
3-12 Telephone Survey Sample Distribution by Technology 3-27
3-13 Billing Regression Analysis Final Model Outputs 3-32
Exhibit Page
3-14 Relative Precision Calculation 3-34
3-15 Self-Reported Free Ridership: Superset of Model Variables 3-37
3-16 Example: Spillover Effects Used for Compact Fluorescent Lamps 3-41
3-17 Representation of Nonparticipant Spillover Effects 3-42
3-18 Net Energy Impact Summary 3-45
3-19 Net Demand Impact Summary 3-46
4-1 Gross Energy Impacts
By Business Type and Technology Group Commercial Indoor and Outdoor Lighting Applications 4-2
4-2 Gross Demand Impacts
By Business Group and Technology Type Commercial Indoor and Outdoor Lighting Applications 4-3
4-3 NTG Adjustments by Technology Type 4-5
4-4 Net Energy Impacts
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications 4-7
4-5 Net Demand Impacts
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications 4-8
4-6 Gross Energy Impact Realization Rates
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications 4-10
4-7 Gross Demand Impact Realization Rates
by Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications 4-13
4-8 Net Energy Impact Realization Rates
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications 4-16
4-9 Net Demand Impact Realization Rates By Business Type and Technology Group Commercial Indoor and Outdoor Lighting Applications. 4-18
4-10 Full Load Hours by Business Type 4-20

4-11 CDOFs by Business Type.. 4-21

Section 1

EXECUTIVE SUMMARY

This section presents a summary of the impact results for the commercial lighting technologies offered under the Pacific Gas \& Electric Company (PG\&E) 1994 Nonresidential Retrofit Programs. This evaluation covered both indoor and outdoor lighting technologies for the Retrofit Express (RE) and the Customized Incentives (Customized) programs. The results are presented in three sections: evaluation results summary (covering the numerical results of the study), major findings, and major recommendations.

1.1 Evaluation Summary

The evaluation results are summarized in terms of energy savings (MWh), demand savings (kW), and realization rates, the ratio of the evaluation results (ex post) to the program design estimates (ex ante). These results are presented on a gross and net basis (i.e., before and after accounting for free riders and spillover). Exhibit 1-1 presents the gross energy and demand savings results, together with the gross realization rates.

Exhibit 1-1
Summary of GROSS Evaluation Results
Commercial Indoor and Outdoor Lighting Applications

Program and Technology Group	Number of Units Paid	Gross Impacts			
		Energy		Demand	
		(MWh)	Realization Rate	(kW)	Realization Rate
Indoor Total	2,826,393	277,688	0.99	62,389	1.19
Outdoor Total	16,363	18,058	0.87	782	6.31
Indoor and Outdoor Total	2,842,756	295,746	0.98	63,172	1.20

These results illustrate the following key points about the gross commercial lighting impacts:

- The vast majority of the savings are from indoor lighting applications.
- The ex post gross impacts equaled the ex ante gross estimate for energy, and exceeded it for demand. This is primarily the result of higher operating factors (as determined by field inspections), in conjunction with the inclusion of the HVAC savings due to the more efficient lights, in the ex post impacts.

Exhibits 1-2 and 1-3 present the net energy and demand impact results, together with the net realization rates, at the same levels presented in Exhibit 1-1.

The net ex post energy impacts exceed the net ex ante design estimates by 39 percent for energy, and 73 percent for demand. To a certain extent, these results reflect the high gross realization rates, but they are really driven by the ex ante and ex post net-to-gross (NTG) ratios. The net to gross adjustments apply equally to energy and demand impacts, since they represent behavioral affects on the decision to purchase energyefficient equipment. Thus the following points apply equally to Exhibits 1-2 and 1-3.

- The ex ante NTG ratio was between 0.70 and 0.77 , depending upon the business segment and technology, averaging about 0.76.
- The ex post NTG ratio for combined indoor and outdoor lighting averaged 1.08.
- When 1.08 is divided by 0.77 , it results in an average 40 percent increase in realized savings.
- Free ridership rates were low for these programs, contributing a 17 percent overall reduction in energy and demand impacts.
- Participant spillover rates offset the free ridership to a small extent, contributing an average of 3 percent increase in impacts
- Nonparticipant spillover effects were detected in this evaluation, contributing a an average 18 percent increase in estimated savings for the combined indoor and outdoor impacts measured for the combined lighting programs.

Exhibit 1-2
Summary of NET Evaluation ENERGY Results
Commercial Indoor and Outdoor Lighting Applications

Technology Group	Gross	NTG Adjustments			Net	
	Gross Impact	Free Ridership Adjustment (1-FR)	Participant Spillover Adjustment	Nonparticipant Spillover Adjsutment	Net Impact without NP Spillover Adjustment	Net Impact with NP Spillover Adjustmen
	(MWh)	(Unitless)	(Unitless)	(Unitless)	(MWh)	(MWh)
Ex Ante						
Indoor Lighting	280,014	0.67	0.10		215,858	
Outdoor Lighting	20,738	0.67	0.10		15,958	
Indoor \& Outdoor Lighting	300,752	0.67	0.10		230,783	
Ex Post						
Indoor Lighting	277,688	0.87	0.03	0.18	250,058	300,043
Outdoor Lighting	18,058	0.82	0.06	0.27	15,891	20,745
Indoor \& Outdoor Lighting	295,746	0.87	0.03	0.18	267,059	320,778
Realization Rates (ex post/ex ante)						
Indoor Lighting	0.99	NA	NA	NA	1.16	1.39
Outdoor Lighting	0.87	NA	NA	NA	1.00	1.30
Indoor \& Outdoor Lighting	0.98	NA	NA	NA	1.16	1.39

Exhibit 1-2 illustrates the following key points about the net commercial lighting energy impact results:

- The ex post net energy impact exceeded the ex ante net impact by 39 percent.
- A significant factor in the high ex post NTG ratio is nonparticipant spillover, which increased the NTG ratio by 18 percentage points. While this spillover effect is documented and believed to be appropriate, net realization rates without nonparticipant spillover are still 1.16.

Exhibit 1-3 presents the net demand savings results, together with the net realization rates, at the same levels presented in Exhibit 1-1.

Exhibit 1-3
Summary of NET Evaluation DEMAND Results
Commercial Indoor and Outdoor Lighting Applications

Technology Group	Gross	NTG Adjustments			Net	
	Gross Impact	Free Ridership Adjustmen (1-FR)	Participant Spillover Adjustment	Nonparticipant Spillover Adjsutment	Net Impact without NP Spillover Adjustment	Net Impact with NP Spillover Adjustmen
	(kW)	(Unitless)	(Unitless)	(Unitless)	(kW)	(kW)
Ex Ante						
Indoor Lighting	52,416	0.67	0.10		40,351	
Outdoor Lighting	124	0.67	0.10		92	
Indoor \& Outdoor Lighting	52,540	0.67	0.10		40,443	
Ex Post						
Indoor Lighting	62,389	0.87	0.03	0.19	56,181	69,000
Outdoor Lighting	782	0.83	0.06	0.27	696	884
Indoor \& Outdoor Lighting	63,172	0.87	0.03	0.18	57,044	69,884
Realization Rates (ex post/ex ante)						
Indoor Lighting	1.19	NA	NA	NA	1.39	1.71
Outdoor Lighting	6.31	NA	NA	NA	7.53	9.56
Indoor \& Outdoor Lighting	1.20	NA	NA	NA	1.41	1.73

These results illustrate the following key points about the net commercial lighting demand impact results:

- The net ex post energy impacts exceed the net ex ante design estimates 73 percent for demand. Like the energy estimates, a significant factor in the high ex post NTG ratio is nonparticipant spillover, which increased the NTG ratio by 18 percentage points.
- These high savings estimates reflect not only the high NTG ratios, but the conservative ex ante design estimates. The high operating factors that the evaluation identified in the commercial sector, and the inclusion of the HVAC savings in the ex post evaluation impacts, contributed to the high net demand savings.
- The high realization rates for outdoor lighting demand are a result of the on-site inspections identifying outdoor lighting that was operating during the day, and thus
on-peak. The ex ante projections assumed very little outdoor fixture on-peak operation, and thus claimed very small on-peak impact. This resulted in division of the small impact found during the evaluation by a very much smaller ex ante value, yielding high realization rates.

Detailed presentation and discussion of this data can be found in Section 4.

1.2 Major Findings

The key findings are best summarized as follows:

- Overall, PG\&E's ex ante estimates for the commercial lighting technologies paid under the 1994 programs were conservative, resulting in net realization rates exceeding one.
- For many of the business types and technologies, hours of operation and operating factors exceeded the ex ante estimated values by a significant margin. This was the main factor contributing to many high gross realization rates.
- High NTG ratios combined with low program design NTG estimates to significantly increase net realized savings. This finding resulted from relatively low free ridership rates, in conjunction with significant participant and nonparticipant spillover.
- The high participation technologies of T8/electronic ballast, optical reflectors with delamping, and HID replacement of less efficient technologies yielded strong realized savings.

1.3 Major Recommendations

Trade on Established Information in Future Evaluations - This evaluation developed extensive observed and measured operating factor and operating hours information on the highest participation segments. There is no reason to believe that the operating factor and operating hours information developed in this evaluation will change significantly from year to year. QC recommends that PG\&E develop an understanding with the California Public Utilities Commission (CPUC) on the validity and use of this information in subsequent evaluations, thus minimizing the need to replicate operating hours and operating factor data for sectors where this information is unlikely to change. This will allow PG\&E and the CPUC to maximize return on money invested in future evaluations, resulting in better estimates for sectors that have yet to be definitively documented.

Other detailed recommendations concerning measures offered and the CPUC Protocols are covered in detail in Section 5.

Section 2

INTRODUCTION

This report covers the impact evaluation of the commercial lighting technologies offered under the Pacific Gas \& Electric Company (PG\&E) 1994 Nonresidential Retrofit Programs. These technologies are covered by two separate program options, the Retrofit Express (RE) Program and the Customized Incentive (Customized) Program. These programs are summarized below.

2.1 The Retrofit Express Program

The RE program offered fixed rebates to customers who installed specific gas or electric energy-efficiency equipment in their facilities. The program covered the most common energy saving measures, and spans lighting, air-conditioning, refrigeration, motors, agricultural applications, and food service. Customers were required to submit proof of purchase with these applications, in order to receive rebates. The program was marketed primarily to small- and medium-sized commercial, industrial, and agricultural customers. The maximum rebate amount, including all measure types, was $\$ 300,000$ per account. No minimum amount was required to qualify for a rebate.

In the lighting end use, the program offered rebates on the following technologies:

- Halogen lamps replacing existing lamps
- Compact fluorescent lamps replacing incandescent lamps
- Compact fluorescent and LED lamps replacing incandescent lamps in exit signs
- Electronic ballasts replacing electromagnetic ballasts
- T8 lamps and electronic ballasts replacing T12 lamps and electromagnetic ballasts in various lengths and configurations
- High-intensity discharge (HID) fixtures replacing incandescent or mercury vapor fixtures
- Installation of occupancy sensors, bypass or delay timers, photocells, and time clock controls for lighting applications

2.2 The Customized Incentives Program

The Customized program offered financial incentives to customers who undertook large or complex projects that save gas or electricity. These customers were required to submit calculations for projected first-year energy savings with their applications and prior to installation of the project. The maximum incentive amount for the Customized program was $\$ 500,000$ per account, and minimum qualifying incentive was $\$ 2,500$ per project. The total incentive payment for $\mathrm{kW}, \mathrm{kWh}$, and therm savings was limited to 50% of direct project cost for retrofit of existing systems. Since the program also applied to expansion projects, the new systems incentive was limited to 100% of the incremental cost to make new processes or added systems energy efficient. Customers were paid 4 cents per kWh , and 20 cents per therm for first-year annual energy savings. A $\$ 200$ per peak kW incentive, and a $\$ 50$ per peak kW early completion (October 31, 1994) bonus for peak demand savings required that savings be achieved during the hours PG\&E experiences high power demand.

As a result of program design, many of the measures installed were similar to or the same as those for the RE program, but were installed in larger and more complex projects.

2.3 Evaluation Overview

The impact evaluation described in this report covers all lighting measures installed at commercial accounts, as determined by the program participant databaseManagement Decision Support System (MDSS)—sector code, which were included under the RE and Customized programs, and for which rebates were paid during calendar year 1994.

The impact evaluation results in both gross and net impacts, and compares these estimates to the program earnings claims ${ }^{1}$.

2.3.1 Objectives

The objectives of the evaluation were originally stated in the Request for Proposals (RFP), refined during the project initiation meeting, and documented in the evaluation research plan. These research objectives are as follows:

- Determine first-year gross energy and demand impacts for RE and Customized lighting technologies paid in 1994, by technology and business type, and overall impacts for the commercial sector

[^0]- Investigate and explain differences between evaluation and program design estimates
- Assess free ridership rates, and investigate and explain differences between evaluation and program design estimates
- Assess spillover rates, and investigate and explain differences between evaluation and program design estimates
- Provide recommendations to strengthen the realized impact of the RE program
- Create a panel of participants for future monitoring of equipment retention in the commercial sector

This report covers the methodology and the gross and net impacts for the sector, divided into indoor and outdoor lighting effects.

Results are segmented by technology and building type. Technologies are defined by measures offered by the RE and Customized programs. Building segments for the commercial market sector, as defined by PG\&E, are office, retail, college and university, schools, grocery, restaurant, health care, hotel/motel, and warehouse.

The difference between gross and net impacts is the behavior that affected customers' participation. Adjustments were made to the gross estimate of savings for customers that would have installed energy-efficient measures anyway, despite the program (free riders), and customers that installed energy efficient measures as a result of the presence of the program, resulting in savings that were beyond the program-related gross savings of the participants (spillover).

The evaluation investigated and, where possible, explains differences between program design estimates and evaluation results. This analysis resulted in recommendations for improving program design estimates (ex ante), which should, in turn, result in postimplementation evaluation savings (ex post) that are closer to ex ante estimated savings.

2.3.2 Timing

The 1994 Commercial Lighting Impact Evaluation began in December 1994, completed the planning stage in March 1995, executed data collection between late May and October 1995, and completed the analysis and reporting phase in January and February 1996. Analysis is based upon the post-installation period from September 1994 through September 1995. The pre-installation period varied depending upon the installation date, but ranges between October 1991 and September 1993.

2.3.3 Role of Protocols

This evaluation was conducted under the rules specified in the "Protocols and Procedures for the Verification of Cost, Benefits, and Shareholder Earnings from Demand Side Management Programs" (the Protocols), as adopted by California Public Utility Commission (CPUC) Decision 93-05-063, Revised January 1995 Pursuant to Decisions 94-10-063, 94-10-059, and 94-12-021. To the extent it was possible during an ongoing evaluation, many of the changes included in CPUC Decision 95-12-0542 were incorporated into the evaluation.

The Protocols control most aspects of the evaluation. They specify the minimum sample sizes, the required precision, data collection techniques, certain minimum analysis approaches, and formats for documenting and reporting results to the CPUC. This evaluation has endeavored to meet all Protocol requirements, and where possible, enhance evaluation techniques or results to supply added value to the developed estimates.

2.4 Report Layout

This report presents the results of the above evaluation. It is divided into five sections, plus appendices. Sections 1 and 2 are the Executive Summary and the Introduction. Section 3 presents the Methodology of the evaluation. It is supported in detail by Appendices A, B, C, and J. Section 4 presents detailed results and discussion and is supported by Appendices K and L. Section 5 discusses and presents recommendations for improving the evaluation, the program measures, the program tracking, and the CPUC Protocols. The remainder of the appendices document the data collection efforts undertaken during the evaluation.

[^1]
Section 3

METHODOLOGY

This methodology section begins with an overview of the evaluation approach. This is followed by a more detailed discussion of the specific engineering, billing regression, and net-to-gross (NTG) analysis approaches used in the evaluation. Additional detail on these three approaches is supplied in Appendices B, C and J, respectively.

3.1 Integrated Evaluation Approach

This overview of the integrated evaluation approach begins by presenting the data sources and sample design approach used for the evaluation of the 1994 Pacific Gas and Electric Company (PG\&E) Commercial Lighting Technologies Evaluation. It is followed by an overview of how the engineering, billing, and NTG estimates are used together to derive the gross and net energy and demand impacts.

3.1.1 Existing Data

The PG\&E Commercial Lighting Evaluation approach used all the data currently available, in particular PG\&E's historical billing data, program participation data, or the Management Decision Support System (MDSS), paper copies of Retrofit Express (RE) and Customized Incentive (Customized) applications, other program-related data, and industry standards information.

- Program Participant Tracking System - The participant tracking system data, maintained in the PG\&E MDSS, contains program project information, and technical information about measure installation. It also provides expected impact estimates based upon the ex ante engineering algorithms. This information is used to create sample designs for data collection and to leverage calibrated impact estimates from the telephone sample to the entire participant population.
- Program Marketing Data - PG\&E program marketing data contain detailed descriptions of program marketing and application procedures, together with details on the measures offered. This data source also provides a general description of measures accepted by the program.
- PG\&E Billing Data - The PG\&E nonresidential billing database contains monthly energy-consumption information for all commercial customers in PG\&E's service
territory. It also contains demographic data for all customers, and the on-peak and off-peak monthly energy usage for customers who receive services on demand or time-of-use (TOU) rates. This information is used to calibrate the engineering estimates to actual pre- and post-installation energy usage.
- Annual Summary Report on Demand Side Management Programs in 1994 and $199{ }^{1}$ (Forecast Filing) - This report documents the ex ante earnings claims, including specific information on the derivation of per-unit ex ante savings estimates and the assumptions that go into those estimates. This documentation often includes assumptions such as operating hours and operating factors, by fixture type. This document supplies the best information available on ex ante estimates and assumptions, thus facilitating knowledge-based comparisons to ex post estimates.
- Industry Standards/Information - In order to establish baseline levels and new equipment performance levels, industry standards information from organizations such as the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) and American National Standards Institute (ANSI) was used, together with information from manufacturers.
- Copies of RE and Customized Paper Application Files - QC requested and received complete copies of application files for a random 100 RE participants and all Customized participants. The RE files were used to verify the entries in the MDSS electronic files and to identify additional information that could be extracted from the file to improve the analysis. The Customized files were used to classify these participants into categories similar to the RE program, where possible, thus allowing maximum use of the statistical billing regression analysis.

3.1.2 Evaluation Surveys and Metered Data

For lighting in the RE and Customized programs, the impact analysis plan is based upon a nested sample design, with a core of lighting loggered sites supplying calibration for the on-site sample, and the on-site audit sample being leveraged with a larger, less expensive, telephone survey. Data between these samples are leveraged through "overlapping items" between the telephone and on-site instruments. The MDSS database program application information is used to leverage results to the entire participant population. This approach, as shown in Exhibit 3-1, results in the efficient use of all information to contribute to the final impact results ${ }^{2}$.

[^2]- The lighting logger data (represented by the innermost circle in Exhibit 3-1) supply the most accurate source of data for calibration of the engineering estimates. This metering, which uses lighting loggers, registers the time and date the monitored fixture is turned on or off, for periods up to two months in length. This information allows calibration of self-reported operating schedules collected during the telephone survey. In addition, it supplies operating information related to hours when facilities are closed, which cannot be collected during the on-site audit. When the lighting loggers are placed, one-time fixture operating wattage measurements (spot watt) are taken to confirm power consumption estimates of the operating fixtures. Loggers were placed in 92 commercial sites with an average of 2.60 loggers per site. Loggers were placed in every participant site where on-site inspections were completed and it was practical to place loggers and obtain reliable data.
- A relatively small on-site auditing sample (represented by the band around the innermost circle in Exhibit 3-1), is designed to support the telephone sample for the largest participation segments. This sample contributes equipment details that are site-specific, and better estimates of operating hours, operating factors, equipment efficiency, lamp burn-out rates, missed opportunities, and other technical factors that are difficult to collect over the telephone. The on-site sample itself is not designed to be statistically representative, but rather to support the estimate of detailed engineering parameters collected within the highest projected impact.
- A significantly larger telephone survey sample (represented in Exhibit 3-1 by the second band from the center), is designed to be representative of the participant population in terms of technology and business type. The telephone survey supplies information on participant decision-making, energy-related changes at each site for the billing period covered by the billing analysis, and data for estimating the NTG adjustments. The comparison group telephone surveys supply information on trends in baseline equipment changes, including lighting retrofits outside the program, changes in square footage, and other trends.
- The participant population (represented by the outermost circle in Exhibit 3-1), is based upon information in the MDSS, and provides information needed to generalize estimated per-unit impact estimates for the telephone-surveyed sample to the entire population of program participants. Using the population to leverage impact estimates corrects for potential bias in the sample selection process, especially in terms of the actual distribution of installed measures.

Methodology

Exhibit 3-1

Nested Sample Design Approach

3.1.3 Demand Estimates

Demand estimates for the 1994 Commercial Lighting Evaluation are based upon engineering models calibrated to on-site data, metered data, and industry standards. As illustrated in Exhibit 3-2, the demand estimate method contains the following elements:

Exhibit 3-2

Method for Estimating Demand Impacts

- The program application and design data are used to create the data collection plan, which guides the data collection efforts of the evaluation (Appendix A, pages A1A18).
- Post-Installation data collection efforts are targeted in a manner to produce the most efficient estimates.
- The sample design begins with the development of participation matrices that indicate the larger and, therefore, more important segments.
- Operating factors derived from lighting logger data and weekday operating factors, collected based upon the number of lamps operating at the time of each on-site audit, are inputs to the engineering calibration. In addition, data collected from the comparison group on-site audit sample, including burned-out lamp rates and existing equipment saturation, are used to calibrate engineering savings estimates (Appendix B, page 12).
- Smaller impact segments do not justify the collection of independent samples of primary data. For these segments, estimates are transferred from a similar segment, or industry standard test results-reported by the manufacturer-are used.
- Estimates of gross demand impacts are the product of the engineering analysis by technology and segment. These impact estimates are based upon the assumption that single fixtures operate according to observed operating factors for installed equipment and each building schedule.
- Program impacts are estimated by combining per-unit demand with the number of units installed, according to the participation matrices, to form the evaluation demand estimates for each segment. These results yield the estimated gross peakdemand impact for the program. They are presented as first-year impacts, accounting for the short-term effect of relamping burned-out lamps.
- The NTG adjustments for behavioral effects of participants and nonparticipants account for free riders (participants who would have adopted similar program measures anyway), and spillover (reductions in energy consumption or demand caused by the presence of the program) (Appendix J).

3.1.4 Energy Estimates

The energy impact estimates for the 1994 Commercial Lighting Evaluation are derived using engineering methods and statistically adjusted engineering (SAE) estimates. As illustrated in Exhibit 3-3, the energy impact method is comprised of the following elements:

- The post-installation inspection data supply crucial lighting logger and spot kW data used to develop segment operating hours and operating factors, which are used with the participation data to create engineering estimates.

Exhibit 3-3
Method for Estimating Energy Impacts

- The per-unit engineering estimates are derived by analyzing the change in fixture connected loads in conjunction with customer operating schedules and fixture operating factors. Lighting logger data, instantaneous post-installation demand measurements, and on-site audit data are used to calibrate the engineering estimates. Additional data collected during comparison group on-site audits concerning burned-out/nonoperating lamps and operating factors (percentage of lights operating at any time) are used to adjust the engineering per-unit savings estimates (Appendix B, pages B-25 through B-31).
- The per-unit engineering energy impacts are developed for each program segment. These represent savings that will be achieved, assuming that single fixtures operate according to observed on-site operating factors and calibrated operating schedules established during evaluation data collection.
- The per-unit engineering energy impacts, combined with the units installed, form the input to the billing regression analysis for segments with sufficient participation (high-participation segments in Exhibit 3-3), or SAE analysis. In the SAE analysis, the engineering estimates are compared to billing data using regression analyses, in order to adjust for behavioral factors of occupants and other unaccounted for effects. The output for these segments are SAE estimates of savings.
- For segments with participation levels too small to support statistical analysis (low-participation segments in Exhibit 3-3), the calibrated engineering estimates are used as the evaluation estimate. These results are presented as first-year impacts, accounting for the short-term effect of relamping burned-out lamps. Calibrated engineering estimates were used in outdoor lighting estimates and the other (miscellaneous) measures because regression analysis could not identify a statistically significant effect.
- The two sets of results described above are combined to represent the evaluation estimate of program savings.
- Two approaches are used to calculate program net effects. One approach attempts to measure net effects directly in the SAE analysis, while the second approach models customers' decisions in the lighting market. The NTG adjustments compensate for free riders (participants who would have adopted similar program measures anyway), and spillover (reductions in energy consumption or demand caused by the presence of the program).

3.2 Engineering Analysis

The engineering analysis combines information from telephone surveys with detailed on-site audit data to supply reliable engineering estimates. These estimates are used as "proxies" for actual building energy consumption, verified using statistical analysis. The primary value of good engineering proxies is that they reduce the standard error of billing regression estimates. Exhibit 3-4 provides an overview of the entire engineering estimation process.

Exhibit 3-4 illustrates the following features of the integrated impact analysis:

- Lighting logger data are used to:
- Calibrate self reported building operating schedules
- Determine whether buildings are operating at the peak hour
- Estimate operating factors for "off" and weekend periods, since direct count information is not available from on-site audits
- On-site data and telephone surveys allow calibration of initial engineering estimates of savings by adjusting post-kW, operating hours, and operating factors to reflect actual operation for the surveyed sample.
- Calibrated per-unit engineering estimates are used in conjunction with the number of fixtures installed from the program application to estimate the impact for each site included in the telephone survey sample.
- Finally, engineering estimates either serve as input to the statistical models or as final results from the calibrated models.

The details of all of the above steps are described in Appendix B, Engineering Detailed Computational Methods.

Exhibit 3-4

Derivation of Engineering Estimates for Use in Billing Regression Analysis

3.2.1 Engineering Demand Model3

The data described earlier are used to develop the inputs to the "load decomposition" demand impact algorithm presented in Exhibit 3-5. The strength of this model is that the key factors affecting gross demand impacts-impacts for operating hours, operating factor, HVAC adjustment factor, and diversity factor-are estimated separately, then combined to estimate overall demand impacts for each action taken by each program participant. This allows clear identification of factors controlling differences in consumption between segments, or between program design and evaluation estimates.

Exhibit 3-5
Engineering Estimates of Gross Demand Impacts

Each of the parameters listed in Exhibit 3-5 are developed as follows:

- The change in Unit Operating Load $\left(\Delta \mathrm{UOL}_{\mathrm{j}}\right)$ is derived by calibrating manufacturers' data with pre- and post-installation spot kW data collected during on-site audits. These data, collected by technology type, are gathered in fixture groups large enough to minimize measurement error. Differences between various

[^3]manufacturers of ballasts and lamps are averaged to develop measure-specific UOLs.

- The number of units (U) of each measure type installed is verified during the postinstallation on-site audit. The on-site audits also include random inspections of fixtures to confirm that newly-installed ballasts meet program specifications.
- The facility open operating factor $\left(\mathrm{OF}_{\mathrm{O}}\right)$ is derived from lamp counts and questions asked during on-site audits. It compensates for partial operation of retrofitted lighting at sites when the facility is open. The OF, which measures the percentage of lamps operating, should not be confused with the diversity factor discussed below, which compensates for whether a site is operating at peak.
- The facility closed operating factor $\left(\mathrm{OF}_{\mathrm{C}}\right)$ is derived from logger data, representing the percentage of fixtures operating during the hours that a facility is closed.
- Air-conditioning savings $\left(\mathrm{AC}_{\text {sav }}\right)$ are the credit for reduced heat load resulting from the installation of more efficient lighting. Cooling credits and heating debits are computed using an approach that compensates for changes in lighting load based upon local heating and cooling degree days. ${ }^{4}$ Note that heating is not an issue in estimating peak demand impacts, since PG\&E's peak occurs during the summer.
- The diversity factor (DF) is the percentage of participants in any one segment operating at the time of system peak. This factor compensates for non-operating facilities at the time of system peak.

The engineering model for energy, which is based upon the same decomposition of load concept, is described below. The approach that is described in this next section illustrates a generalized approach to estimating annual lighting impacts. Actual energy impacts were generated in a fashion that is related more closely to the approach described above for demand impacts: on an hourly basis, for all hours in a year.

3.2.2 Engineering Energy Model

The model used to calculate annual energy impacts is similar to the demand impact model presented in Exhibit 3-5, except that operating factors and operating hours are incorporated for each distinct operating period. Additionally, an adjustment is made for heating usage and cooling usage. The model used, and definitions of each element of the equation, are presented in Exhibit 3-6.

[^4]Exhibit 3-6
Engineering Estimates of Gross Energy Impacts

$$
\begin{aligned}
\mathrm{kWh}_{\mathrm{sav}, \mathrm{j}}= & \Delta \mathrm{UOL}_{\mathrm{j}}{ }^{*} \mathrm{U}^{*}\left\{\left(\mathrm{OFWK}_{\mathrm{i}}{ }^{*} \mathrm{YWKHO}_{\mathrm{j}}\right)+\left(\mathrm{OFWE}_{\mathrm{i}}{ }^{*}\right.\right. \\
& \left.\left.\mathrm{YWEHO}_{\mathrm{j}}\right)+\left(\mathrm{OFBN}_{\mathrm{i}}^{*} \mathrm{YBNO}_{\mathrm{j}}\right)\right\}^{*} 0.001+\mathrm{AC}_{\mathrm{sav}}-\text { Heat }_{\mathrm{pen}}
\end{aligned}
$$

where

$\mathrm{kWh}_{\text {sav, } \mathrm{j}}$	$=$ Annual energy impact for action "j" (kWh/yr.)
$\Delta \mathrm{UOL}_{\mathrm{j}}$	$=$ Estimated per-unit gross demand impact for action j
U	$=$ Number of units installed
$\mathrm{OFWK}_{\mathrm{i}}$	$=$ Annual weekday operating factor for segment i
$\mathrm{YWKHO}_{\mathrm{j}}$	$=$ Annual weekday operating hours
$\mathrm{OFWE}_{\mathrm{i}}$	$=$ Annual weekends (Saturday and Sunday separately)
$\mathrm{YWEHO}_{\mathrm{j}}$	$=$Annual weekends (Saturday and Sunday separately)
$\mathrm{OFBN}_{\mathrm{i}}$	$=$ Annual operating factor for segment i when building is
	closed
$\mathrm{YBNO}_{\mathrm{j}}$	$=$ Annual hours when building is closed
$\mathrm{AC}_{\text {sav }}$	$=$Air conditioning savings resulting from lighting
Heat $_{\text {pen }}$	$=$ Heating penalty resulting from lighting impacts

Each of the parameters listed in Exhibit 3-6 are developed as follows:

- The change in Unit Operating Load $(\Delta \mathrm{UOL})$ and the number of units (U) of each measure type installed are the same as those used in the demand model (Exhibit 35).
- Operating factors (percentage of retrofitted lighting units operating during a specified time - OFWK, OFWE, OFBN) are derived from lamp counts, lighting logger records, and questions asked during on-site audits and telephone surveys. They compensate for partial operation of the retrofitted lighting.
- Annual operating hours for each period (YWKHO for weekdays, YWEHO for weekends, and YBNO for all building closed periods) are developed from a combination of lighting logger measurements conducted during the post-installation period, and interview questions that address seasonal variations in retrofitted lighting usage.
- Cooling credits are computed using an approach that compensates for changes in HVAC load based upon both the lighting only impacts and local heating and cooling degree days.
- The heating penalty from energy-efficient lighting installation was estimated for those customers that heat with electricity. Using the ASHRAE method ${ }^{5}$, the heating penalty for customers with electric resistance space heat is less than 5% of the lighting impact for any customer in PG\&E's service territory.

3.2.3 RE and Customized Measure Segmentation

Measures are grouped in order to develop segments representing common technologies. This approach, while establishing estimates at the measure level, maximizes leveraging of data in the statistical analysis. The comparisons made at the individual measure level are listed in Exhibit 3-7.

Since lighting technologies are generally the same in both the RE and Customized programs, the most common technology groupings can be used as common categories for both programs. For the Customized program, a thorough review of the paper files was performed in order to confirm technology types, or reassign the allocation of measures to categories that matched the RE segmentation. During this review, many of the controlling engineering parameters were extracted from the applications and entered into an electronic dataset to facilitate analysis. Exhibit 3-7 illustrates the overlap of technology categories for the RE and Customized programs. ${ }^{6}$

When the measure code was received from PG\&E, many of the measures with clearly defined action codes were allocated to the "Lighting Other" category, so that this category represented 35% of the total population. To facilitate evaluation, QC reallocated these measures to an appropriate technology group category. As a result, The "Lighting Other" category represents only about 5\% of total participation in the Customized program.

[^5]Exhibit 3-7
Comparison of Segmentation by Technology

RE Program		Customized Program	
Technology Segment Descriptions	PG\&E Measure Code	Technology Segment Descriptions	PG\&E Measure Code
Halogen		Halogen	
All wattages	L1	Low Voltage Halogen	182
< 45 watts	L60	Halogen Lamp Conversion	156
>50 watts	L61		
Compact Fluorescent Lamps		Compact Fluorescent Lamps	102
Screw In CF			
All wattages	L2, L56		
5-13 watts	L62		
14-26 watts	L63		
Screw In CF- Reusable ballast			
All wattages	L3, L58, L59		
5-13 watts	L64		
$14-26$ watts	L65		
Hard Wired CF			
All wattages	L4		
5-13 watts	L66		
14-26 watts	L67		
27-50 watts	L68		
Incandescent to Fluorescent Fixture		Incandescent to Fluorescent Fixture	
With Energy Saving Ballast \& T12 Lamps	L7	Incandescent to Fluorescent - Indoor	101
With Electronic Ballast \& T8 Lamps	L8	Incandescent to Fluorescent - Outdoor	120
Exit Signs		Exit Signs	155
Incand. to Compact Fluorescents	L5	Incand. to LED	155
Incand. to LED or Electroluminescent Retrofit	L6		
Efficient Ballasts Changeouts		Efficient Ballasts Changeouts	
Electronic Ballasts		Modified Electromagnetic Ballasts	
2 Lamp Electronic Ballast	L14	Hybrid Ballasts	147
3 Lamp Electronic Ballast	L15	Primium Ballast (Core \& Coil)	148
4 Lamp Electronic Ballast	L16	Electronic Ballasts	149
T8 Lamps and Electronic Ballasts		T8 Lamps and Electronic Ballasts	
New Fixtures			
One-Lamp Fixture	L9, L117, L121		
Two-Lamp Fixture	L10, L118, L122		
Three-Lamp Fixture	L11, L123		
Four-Lamp Fixture	L12, L120, L124		
2'1 U Tube or 2 lamps	L69		
2'-2 U Tubes or 4 lamps	L70		
2'-3 U Tubes or 6 lamps	L71		
4-1 lamp	L72		
4'-2 lamps	L73		
4'-3 lamps	L74		
$4^{\prime}-4$ lamps or $8^{\prime}-2$ lamps	L75		
Fixture Modif.- Replace Lamps and Ballasts		Fixture Modif.- Replace Lamps and Ballasts	
Replace Lamps \& Ballasts - 2' Fixture	L21	Replace Lamps \& Ballasts - 2' Fixture	146
Replace Lamps \& Ballasts - 3^{\prime} Fixture	L22		
Replace Lamps \& Ballasts - 4' Fixture	L23		
Replace Lamps \& Ballasts - 8' Fixture	L24		
Delamp Fluorescent Fixtures		Delamp Fluorescent Fixtures	
Fixture Modif.- Delamp and Reflector		Fixture Modif.- Delamp and Reflector	
Removal - 2' Lamps \& Ballasts	L17	1-F96T12 (60W) w/EE Magnetic Ballast	181
Removal-3' Lamps	L18	Remove Lamps Reduce Lights	150
Removal-4' Lamps	L19		
Removal - 8' Lamps	L20		
High Output T8 \& T10 Conversion w/ Delamp			
T10 \& Energy Saving Ballast	L76		
T10 or T8 \& Electronic Ballast	L77		
High Intensity Discharge		High Intensity Discharge	
Interior Compact HPS from Incand.		Metal Halide Fixtures - Interior	104
$0-100$ watts HPS	L25	HPS/LPS - Exterior	123
$0-35$ watts HPS	L78		
36-70 watts HPS	L79		
71-100 watts HPS	L80		
Interior Standard MH from Merc. Vapor			
101-175 watts MH	L26		
176-250 watts MH	L27, L37		
251-400 watts MH	L81		
Exterior HPS from Merc. Vapor			
$0-100$ watts	L28		
101-175 watts	L29		
176 watts \& greater	L30		
Reduced Wattage Lighting		Reduced Wattage Lighting	
T8 (32 watt) Fluorescent Lamp	L13	4' Energy Saver Fluorescent Lamps	142
		8' Energy Saver Fluorescent Lamps	143
		T8 Fluorescent Lamps	144
		Lower Wattage Incandescent Lamps	152
		Current Limiters	153
Controls		Controls	
Time Clocks	L31	Lighting Controls	160
Occupancy Sensors		Lighting EMS	164
72-350 watts controlled	L32	Motion/Occupancy Sensors	166
351-1000 watts controlled	L33	Photocell	168
1000 watts and greater controlled	L34	Bypass/Delay	169
Wall Mounted	L82		
Ceiling Mounted	L83		
Bypass/Delay	L35		
Photocell	L36		
		Lighting Other	
		Daylighting	191
		Optical Reflectors	193
		Lighting Other	199

As part of the process of matching the action and measure codes, and of understanding the original calculations so that differences between the final evaluation results and the ex ante estimates could be explained, QC performed a review of the ex ante estimates and the parameters that went into them. Appendix L summarizes the distribution of NTG ratios that were applied, by technology and building type. These factors, plus the detailed understanding of the ex ante algorithms, allowed the clear identification of reasons for ex post differences, which are presented in Section 4 of this report.

3.2.4 Engineering Connected Load Estimates

The basis of both engineering estimates and program design estimates is the per-unit connected load computation. In both cases, estimates are created by subtracting the estimate of "on" consumption of the average new fixture from the "on" consumption of the average original fixture. The documentation and comparison of evaluation estimates to program design estimates are the first steps to understanding reasons for differences between evaluation and program estimates.

The per-unit consumption estimates for the engineering analysis are from manufacturers' literature. Values for program design estimates were taken from the 1994 RE program estimates, as supplied with the October 1993 Forecast Filing. ${ }^{7}$ Manufacturers' estimates were then reviewed and noted as a way to explain differences between evaluation results and program design estimates.

3.2.5 Engineering Operating Hour and Operating Factor Estimates

One of the primary differences between evaluation engineering estimates and program estimates is that evaluation estimates are based upon program participant-specific operating hours and operating factors (the percentage of retrofitted lights operating at a specified time). Program design estimates, because they are created before the program is conducted, are based upon expectations or standards for typical buildings, rather than the direct measurement of program participant energy use.

The source of operating hours assumptions for the program design estimates is an Operating Hours Study conducted in 1992 by HBRS. The operating hours are calculated as full load operating hours, thus defining an "on" operating factor of 1.0. The peak load diversity factor came from the October 1993 Forecast Filing referenced above. The value of 0.67 is based upon an analysis of 50 end-use metered points, according to a study that was performed by Regional Economic Research (RER).

[^6]The sources of premise-specific operating hours for evaluation estimates are displayed in Exhibit 3-8. Nesting of the samples (lighting logger data within on-site audits, within telephone surveys) allows calibration of less expensive data collection methods to those that are more costly.

Exhibit 3-8
Operating Hours and Operating Factors for Engineering Models (Sources Used to Determine Each Estimate)

$\mathrm{Source}^{\text {Parameter }}$		Operating Hours	Operating Factors
Program Design	$\begin{gathered} \text { Peak } \\ \mathrm{kW} \end{gathered}$	NA	Peak Load Diversity $=0.67$
	kWh	Specified by Building Type from Operating Hours Study	Assumed to $\mathrm{Be}=1.0$
Evaluation			
Telephone Survey	Peak kW	NA	Determined by Premise from Customer Self-Report, Calibrated to On-Site Findings
	kWh	Determined by Premise from Customer Self-Report, Calibrated by Audit Data and/or Run-Time Meter Data	Determined by Premise from Customer Self-Report, Calibrated to On-Site Findings
On-Site Audits	Peak kW	NA	Determined by Actual Count at Time of Audit and Extrapolated to Peak Hour Based upon Customer SelfReports
	kWh	Deterined by Premise and Schedule Zone, Calibrated to Run-Time Meter Data for Metered Sites	Determined by Actual Count at Time of Audit and Extrapolated to Remaining Operating Hours Based upon Customer Self-Reports of Use Patterns
Lighting Loggers	Peak kW	NA	Determined by Actual Count During On-Site Audit
	kWh	Determined by Run-Time Meters by Schedule Zone	Determined by Actual Count During On-Site Audit

While lighting loggers supply information about whether the building is operating at the time of peak demand, for the peak demand estimate, the operating factor is actually estimated by extrapolation of the operating factor observed during the on-site audit, and is based upon actual lamp and fixture counts.

3.2.6 Engineering Cooling Benefit Estimates

Cooling savings resulting from reduced internal heat gains (caused by the installation of more energy-efficient lighting) are a function of the contribution of lighting internal gains to cooling load, in combination with the efficiency of the cooling system.

A modified version of the approach presented in a recent issue of the ASHRAE Journal 8 was used in this analysis. Equations for the demand and energy adjustments used in this evaluation are presented in Exhibit 3-9, together with definitions of the elements that compose the estimates.

Exhibit 3-9
Estimate of Cooling Benefit

```
ACSAVJ,kW = kWLSAV,j/MCOP
ACSAVJkWh = kWhLSAV;**RCF/MCOP
```

Where
$\mathrm{ACSAVj}, \mathrm{kW}=$ Additional kW savings attributed to reduced demand from lighting action "j" (kW)
kWLSAV, $\quad=$ Demand savings directly attributable to action "j" (kW)
MCOP $=$ Marginal coefficient of performance for cooling system, including auxiliaries and supply and returning fans (unitless)
$\mathrm{ACSAVj}, \mathrm{kWh}=$ Additional savings attributed to reduced cooling load from lighting action "j" (kWh/yr)
$\mathrm{kWhLSAV}, \mathrm{j}=$ Energy savings directly attributable to action "j" (kWh/yr)
RCF $\quad=$ Regional Cooling Factor-fraction of annual lighting energy that is rejected as heat and thus requires cooling. Value is dependent upon local cooling degree days, and is supplied by reference table (unitless)

[^7]The features of the ASHRAE method are as follows:

- The cooling demand savings are calculated by dividing the lighting energy saved ($k W_{L S A V}$,) by the efficiency of the HVAC system (its marginal coefficient of performance - MCOP). The computation assumes that all energy saved during the peak period results in a reduction in peak demand. This methodology has the potential to increase lighting program peak demand impacts by approximately 33 percent.
- In calculating cooling energy savings, the lighting energy saved (kWLSAV, j) is first multiplied by a regional correction factor (RCF) to reflect interregional differences in the percentage of lighting energy savings that affects air-conditioning energy usage over the entire cooling season. ${ }^{9}$ The resulting adjusted energy savings are then divided by the MCOP to determine estimated HVAC system energy savings. Using this approach, it is estimated that, in the PG\&E service area, cooling energy savings add approximately 12 percent to lighting energy savings.

The summer cooling energy savings that result from the installation of more efficient lighting fixtures is offset by a winter heating penalty caused by reduced heat contribution during the heating season.

3.2.7 Engineering Heating Penalty Estimates

The increase in winter heating energy requirements resulting from reduced internal gains (caused by the installation of energy-efficient lighting) is computed using a method similar to that used to calculate cooling benefits. In summary, the cooling credit and heating debit together should increase peak demand impacts by approximately 33 percent, and annual energy consumption by 8 to 10 percent. The heating algorithm and its elements are described in Exhibit 3-10.

[^8]Exhibit 3-10
Estimate of Heating Increase Penalty
(Electric Heating Only)

Heat pen,j,kWh $=\left(\mathrm{kWh}\right.$ LSAV, ${ }^{*}$ RHF* PERIM \bullet FRACTION $) / \mathrm{HPCOP}$		
Where		
Heat pen,j,kWh	=	Additional heating energy required because of the lower heat rejection of new lights ($\mathrm{kWh} / \mathrm{yr}$)
kWhLSAV,j	$=$	Energy savings directly attributable to installation of lighting measure "j" (kWh/yr)
RHF	=	Regional Heating Factor - fraction of annual lighting energy savings that would have been rejected as heat, thus requiring additional heating. The value is dependent upon local heating degree days, and is supplied by a reference table (unitless)
HPCOP	=	Efficiency of the electric heating system -- default of 1.0 for electric resistance heat or 2.0 for heat pumps (unitless)
PERIM•FRACTION	$=$	Fraction of the floor area that is within 15 feet of the perimeter wall (unitless)

The ASHRAE Journal method for calculating increases in heating energy savings entails multiplying the lighting energy saved (kWhLsav,j) by a regional correction factor (RCF) for heating to reflect interregional differences in the percentage of lighting energy savings that result in increases in heating energy requirements. ${ }^{10}$ This product is then multiplied by the fraction of building floor area within 15 feet of the perimeter of the building, as this is where most heat loss occurs. Finally, the mechanical system efficiency parameter, HPCOP is applied to adjust for a conversion from building heat load to heating system energy use. In addition, three considerations are reflected in this model.

- The electric heating energy debit is smaller than the cooling credit, and is less than 1 percent of the lighting energy savings, depending upon the perimeter fraction.
- The heating demand savings is not addressed because PG\&E is a summer peaking utility, and no heating occurs during the summer peak period.
- The heating penalty is only a factor if heating is electric.

[^9]
3.3 Billing Regression Analysis

The billing regression analysis of PG\&E's Commercial Lighting Evaluation is an integrated part of the overall gross and net impact evaluation. The key objective of the analysis is to determine the first-year program energy impacts. Statistical analysis is employed to model the differences of customers' energy usage between pre- and postinstallation periods. The model is specified using actual customer billing data, and independent variables that explain changes in customers' energy usage, including engineering estimates of program participation. This SAE analysis is consistent with the requirements of the Load Impact Regression Model (LIRM) defined in the CPUC Protocols. The analysis employed in this evaluation used all of the telephone survey points, with the exception of two sites. These two points disproportionately skew the performance of the model in the direction of increasing the impact.

The results of the billing regression analysis are estimated as ratios, termed "realization rates," of realized impacts to engineering impact estimates. Realized impacts represent the fractions of the engineering estimates actually observed or detected in the statistical analysis of actual billing data. The realization rates estimated as coefficients in the SAE regression models are relative to the results of the evaluation-based engineering estimates, not the PG\&E program ex ante estimates. The SAE realization rates, the estimation of which is the topic of this subsection, are then used to estimate program impacts and realization rates relative to the ex ante estimates. Program realization rates are the topic of Section 4.

This subsection presents the approach and findings of the billing regression analysis. It begins with a discussion of analysis periods and data sources used in the billing regression analysis, and then presents the telephone sample design and final sample allocation. Next, the regression model specification and SAE realization rate results are presented. The presentation of a final specification used to estimate net impacts directly, termed "Approach A" is presented in the next subsection, (Section 3.4.1) NTG analysis. The "Approach A"billing regression analysis supports the direct estimation of net program impacts as a consequence on the energy analysis. The key assumption underlying this approach is that equipment purchases outside the program represent a baseline for what would have happened in the absence of the program. Appendices A, C and K detail implementation of the specific methods described below.

3.3.1 Use of Data Sources

The billing regression analysis for the 1994 Commercial Lighting Evaluation uses data from four primary data sources: the MDSS tracking database, the billing database, the telephone survey data, and the engineering estimates of changes of usage between the pre- and post-installation periods. It also utilizes the weather data tape from PG\&E's load research weather sites. A summary of the data elements used in the regression analysis are presented below, and a more detailed discussion can be found in Appendices A and C.

- Program Participant Tracking System - The participant tracking system for the RE and Customized programs was maintained as part of the PG\&E MDSS. It contains program application, rebate, and technical information about installed measures, including measure description, quantity, rebate amount, and ex ante demand, energy, and therm saving estimates. The MDSS database is linked to the billing database and other program databases through PG\&E's customer control numbers.
- PG\&E Billing Data - For this evaluation, the PG\&E billing data were obtained from two PG\&E data sources. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG\&E's service territory, and was used in the sample design as described in Appendix A. The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG\&E's Load Data Services. ${ }^{11}$ Since the second billing dataset has many useful fields not included in the first dataset, a decision was made to use the second billing dataset to conduct the statistical analysis. The billing series used in the analysis is PG\&E's prorated monthly usage data, a series calculated by PG\&E for each calendar month, from January 1991 to September 1995.
- Weather Data - The hourly dry bulb temperature collected for 25 PG\&E load research weather sites is used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site is linked to that customer by using the PG\&E-defined weather site mapped to PG\&E's local office.

In addition to the data sources discussed above, another key input to the regression analysis is the telephone survey data collected as part of this evaluation effort. The sample design and final sample allocation achieved from the telephone survey are discussed below.

3.3.2 Sample Design and Segmentation

The sample design for the PG\&E Commercial Lighting Evaluation was based upon analysis of 1994 program participation data and PG\&E billing data. The goal of the sample design was to achieve the most efficient utilization of project resources in order to estimate the first-year gross and net impacts in a manner that met the sample size and evaluation accuracy requirements defined by the Protocols. A detailed discussion of the sample design and sampling plan is presented in Appendix A.

The lighting evaluation is based upon a nested sample design approach. The main feature of this approach is that it consists of four groups of customers segmented according to the type of information available. The largest customer group included all

[^10]of the commercial customers who received rebates for eligible lighting technologies in 1994 (the "participant population") with monthly PG\&E billing data and participant tracking data. The smallest group included the loggered participants with the most comprehensive information available: lighting logger data, on-site audit data, telephone survey data, participant tracking data, and billing data. A similar nested sample design was also implemented for the comparison group, with the exception that the logger data was not collected for the comparison group. The advantage of a nested sample design is that it yields overlapping samples. These are used to compute dual estimates from the engineering and statistical analysis for the same group of customers, and therefore yield robust and accurate estimates of the SAE realization rates.

The telephone survey sample was selected based upon the stratified random sampling techniques for both participant and comparison group. The objective of stratification is to improve the overall reliability of estimates by restricting the sample to reasonably homogeneous segments, while at the same time ensuring that sufficient representation of the population is preserved. The sample segmentation is developed across two dimensions: business types and technologies.

- The customer segment is defined primarily by the business types, which were determined based upon the MDSS database (for participants), and the Second Standard Industrial Classification (SIC2) code-which represents building activityfrom the billing dataset (for the comparison group). Within each business type, the annual energy consumptions are used as proxies to group customers into usage bins, and sample points are selected to reflect the underlying distribution of the participant population.
- Technology segmentation is important because the use of electricity, and therefore the program impacts, varies by program measure. Therefore, by grouping together common technologies, the variation in impacts is reduced, which, in turn, results in more accurate estimates of the SAE realization rates. For example, all T12 to T8 retrofit measures are grouped together, despite the fact that some installations are new fixtures, while others are retrofits, and different measures have different levels of projected energy impacts. These factors are directly accounted for in the engineering estimates. That is, the engineering estimates account for interparticipant variation so that what is assumed is that the fraction of the expected impact is stable within a segment, rather than the level of the impact. This assumption is the basis for SAE models.

Ten business segments and 11 technology groups were defined and used in the sample design and sample allocation for the RE program. For each business and technology combination, the sample was allocated in proportion to avoided costs. The purpose of this weighting scheme is to identify which technologies and/or business types account for the greatest impact on the program's resource and shareholder values. Avoided costs, by business type and technology group, for the RE program are presented in

Exhibit A-2 of Appendix A. Three business types: offices, retail, and schools, account for more than 70 percent of the projected (ex ante) program-avoided costs in 1994; the office segment alone accounts for approximately 37 percent of the avoided costs.

Given the low participation in the Customized program (only about 120 participants in 1994), all hard copy application forms were reviewed and a census was attempted for all eligible participants. The Customized program total avoided costs account for approximately 6 percent of the total commercial sector.

3.3.3 Selection of Participant and Comparison Group

Participants in the lighting program are defined as those PG\&E commercial customers who received rebates from PG\&E in the 1994 calendar year for installing at least one lighting measure under the rebate programs.

The comparison group for this study is defined as PG\&E commercial customers who did not receive rebates for lighting technologies in the 1994 calendar year under the nonresidential rebate programs, and who share many characteristics with the commercial sector participant group in terms of annual usage and business type distribution. Customers who were program participants in prior years are eligible for the comparison group. In order to avoid over surveying of PG\&E's commercial customer base (i.e., calling the same customer twice for similar information), comparison group samples were coordinated with the HVAC end use evaluation effort.

The sampling unit for both participant and comparison groups was defined as customer premise. A premise is defined as all billing accounts that correspond to the same location and customer. The final participant sample frame consists of 1,675 premises drawn from the eligible population of 6,037 lighting program participants who were paid in 1994 from both the RE and Customized programs.

The comparison group sample frame consists of 4,039 customers drawn from the eligible population of 26,435 commercial customers that satisfied all of the screening criteria used in construction of the sample frame. In drawing the sample frame, targets are established for each business type and usage segment, so that the sample frame distribution, by building type and usage segment, is the same as that of the participant population.

The process of reduction to the eligible sample involved the elimination of customers that had 1) moved during the period of interest; or 2) had billing records with significant missing data. Customers were further screened to identify those who had high-quality data for each month, for all three years of the analysis window.

Appendix A (pages A19-A-26) details the reduction of the eligible population to a sample frame suitable for estimating realization rates and not confounded with uncertainty in the billing series itself. None of the criteria used to screen the sample are correlated
with the SAE realization rate; therefore, the screening criteria preserve the transferability of the model results to the population. Moreover, since all the installation information pertaining to the entire participant population is used to develop the expected program impacts, this step introduces no bias in calculating unadjusted expected impacts.

3.3.4 Analysis Sample Size and Distribution

Two analysis samples of 480 participant and 458 nonparticipant commercial customers were collected for the evaluation. The data collected in the telephone survey supplies information on energy-related changes at each site for the billing period covered by the statistical billing data analysis.

As discussed earlier, this evaluation utilizes a nested sample design approach. The onsite audit sample and the lighting logger sample are collected as part of the telephone survey, with the exception of a few customers who completed an on-site audit and later declined to be telephone surveyed. The final analysis sample size of 480 commercial participant customers represents 325 customers who were surveyed only by telephone; 154 customers who were surveyed by telephone and on-site audited; and one customer who was on-site audited, but later refused to complete a telephone survey. This sample includes a total of 432 RE program indoor lighting participants; 20 Customized program indoor lighting participants; and 28 participants who installed only outdoor lighting measures under the RE or Customized programs. The final sample distribution by building type, program, and indoor/outdoor measures is presented in Exhibit 3-11.

Exhibit 3-11
Analysis Sample Distribution
By Program, End Use and Business Type

Building Type*	Participants			Comparison Group	Total
	Indoor		Outdoor		
	RE	Customized	RE/Customi zed		
Office	106	2	6	138	252
Retail	105	3	14	104	226
Coll/Univ	1	0	0	3	4
Sch ool	61	1	3	33	98
Grocery	27	11	0	30	68
Restaurant	20	0	2	29	51
Health Care	33	0	1	20	54
Hotel/Motel	14	1	0	36	51
Warehouse	32	1	1	32	66
Commercial Misc.	33	1	1	33	68
TOTAL	432	20	28	458	938

* Defined based upon survey reponses-may differ from MDSS.

Methodology

In order to estimate independent realization rates at the business type and technology level, the lighting technologies were further grouped into seven categories, as shown in Exhibit 3-12. Among those technology categories, the standard-efficiency fluorescent group accounts for the largest share of impact, with approximately 65 percent of the total engineering impact estimate for energy. The second largest technology group is the interior HID and halogen group, which accounts for about 11 percent of the impacts, followed by the Customized measures (7 percent), and the compact fluorescent lamps (7 percent). The outdoor lighting measures account for approximately 5.6 percent of the total impacts.

Exhibit 3-12
Telephone Survey Sample Distribution by Technology

Lighting Technology	Description of Technology	Sample Size *
RE Program: Interior HID and Halogen	All Halogen Wattages, All Indoor HID Measures	65
RE Program: Compact Fluorescent Lamps	All Compact Fluorescent Measures	175
RE Program: Exit Signs	All Exit Sign Retrofit Measures	59
RE Program: Standard- Efficiency Fluorescent	Incandescent to Fluorescent Fixtures, Efficient Ballast Changeouts, T-8 Lamps and	351
Electronic Ballasts, Delamp Fluorescent Fixtures, Reduced Wattage Lighting	57	
Indoor Lighting Measures	All Controls, All Other Misc. Indoor Lighting Measures	20
Customized Program: All Indoor Measures	All CI Lighting Measures	
Outdoor Lighting: All Outdoor RE and Customized Measures	Exterior HPS from Mercury Vapor, Outdoor Incandescent to Fluorescent, Exterior HPS/LPS	94

*Sum may exceed the total sample size because there were multiple measure installations.

3.3.5 Analysis Periods

According to the Protocols, participants are defined by the "paid date" instead of the "installation date." Most customers actually installed measures in 1993 or 1994, with 1994 installations accounting for approximately 75 percent of total installations. ${ }^{12}$

[^11]When the billing regression analysis is used to model the change of consumption attributable to the program measures, the first step is to isolate the pre- and postinstallation periods for each customer in the analysis database, so that the impact of these measures can be verified.

Two comparison periods are specified so that pre-installation data from both 1992 and 1993 can be used. Two sets of analysis periods support the joint estimation of changes relative to two years of pre-installation data using a simultaneous equation approach described later in this section. Estimation occurs in a two stage least square (2SLS) model as defined in the next section, using the following two analysis periods:

- The primary analysis periods are defined in a way that maximizes the inclusion of a majority of the sample with high-quality data. Because the installation dates cannot be determined accurately for all customers in the analysis database, the preinstallation period (October 1991 - September 1992) and a post-installation period (October 1994 - September 1995) are defined for the entire participant sample. This definition creates a window so that billing data excluded from the analysis is wide enough to ensure that all participants have the effects of program measures isolated from the pre- and post-installation periods. In this way, realization rates are not biased by errors in estimating dates of installation.
- A second analysis period is used to estimate the first stage of the 2SLS model. The first-stage model is only used to estimate customer-specific inter-year correlation's, and is less sensitive to errors that may be introduced by estimation of the installation dates. The second pair of pre- and post-installation periods compares 1993 (October 1992 - September 1993) to 1995 (October 1994 - September 1995). For these customers, prorated estimates of program impacts are computed to account for when the installation likely occurred, if it is estimated that installation took place during a portion of the pre-installation period.

For a more complete discussion of these analysis periods, and the model specification, see Appendix C, Model Specification and Results on pages C-9-C-12.

The specification of two analysis periods allows for the analysis of pre-installation periods in a manner that, through the use of the earlier pre-installation period, minimizes measurement error in the identification of installation, and retains the information of value contributed by the more recent pre-installation period. As discussed below, these analyses periods support seasonal billing data regression models. Seasonal models produced more stable results without artificially deflating the parameter standard errors that would be induced by autocorrelated monthly observations.

3.3.6 Model Specification and Results

The billing regression analysis for the lighting program uses two different multivariate regression models under an integrated framework of providing unbiased and robust model estimates in the commercial sector. The key feature of our approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variations in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for both participants and the comparison group, as a function of pre-installation-year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group.

The SAE impact model used in this evaluation is specified as a two-stage ordinary least squares (2SLS) model that allows for the utilization of all billing and sample data from two pre-installation periods (as described above). The estimated SAE realization rates are used to adjust the engineering estimates of expected annual energy impacts for the entire participant population. These impacts are presented in Section 4, and were used to compute program realization rates.

Baseline Model - The baseline model explains post-installation energy usage as a function of the pre-installation energy usage, weather changes, and customer selfreports of factors that could affect energy usage. In order to isolate the program impact from the energy usage changes, only the comparison group is used to fit this model. The baseline model has the following functional form:

$$
\mathrm{kWh}_{\text {post, }, \mathrm{i}}=\sum_{\mathrm{j}} \alpha_{\mathrm{j}}+\beta \mathrm{kWh} \mathrm{pre}, \mathrm{i}+\gamma\left(\Delta \mathrm{CDD}_{\mathrm{i}}\right) * \mathrm{kWh}_{\text {pre }, \mathrm{i}}+\sum_{\mathrm{k}} \eta_{\mathrm{k}} \mathrm{Chg}_{\mathrm{i}, \mathrm{k}}+\varepsilon
$$

Where
$\mathrm{kWh}_{\text {post, }}$ and $\mathrm{kWh}_{\text {pre, } \mathrm{i}}$ are customer i's annualized energy usage for the post- and pre-installation periods, respectively;
$\Delta \mathrm{CDD}_{i}$ is the annual change of cooling degree days (base $65^{\circ} \mathrm{F}$) between postinstallation year and pre-installation year;

Chg $_{i, k}$ are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees, and square footage;
α_{j} is the indicator variable (0/1) for the jth business type. It equals 1 if the customer is in that business type, and 0 otherwise;
β and γ are the estimated slopes on their respective independent variables; and, ε is the random error term of the model

For each customer in the analysis dataset, two predicted usage values are calculated using the parameters of the baseline models estimated independently for the 1993 to 1995, and 1992 to 1995 analysis periods. They both take the same functional form, with different segment-level intercept series $\left(\alpha_{j}\right)$ and slopes (β and γ):

$$
\mathrm{kWh}_{\text {post, }, ~}=\mathrm{F}_{\text {pre }}\left(\mathrm{kWh}_{\text {pre }}\right)=\sum_{j} \alpha_{j}+\beta \mathrm{kWh}_{\text {pre, } i}+\gamma\left(\Delta \mathrm{CDD}_{\mathrm{i}}\right) * \mathrm{kWh}_{\text {pre }, \mathrm{i}}
$$

SAE Model - Using the predicted post-installation usage values estimated in the baseline models, a simultaneous equation model is specified to estimate the SAE realization rates. This approach employs a 2SLS model that incorporates billing data and engineering estimates from 199313 and 1995 to fit the first (stage 1) model. The 1992 and 1995 data are used in the final (stage 2) model. The first stage contributes an estimate of customer-specific inter-year correlation that is used as an independent variable in the final model. The SAE simultaneous system can be described as follows:

Stage 1:

$$
\mathrm{kWh}_{95, \mathrm{i}}-\mathrm{F}_{93}\left(\mathrm{kWh}_{93}, \Delta \mathrm{CDD}_{93}\right)=\sum_{\mathrm{m}} \beta_{\mathrm{m}} \mathrm{Eng}_{\mathrm{m}}+\sum_{\mathrm{k}} \eta_{\mathrm{k}} \mathrm{Chg}_{\mathrm{i}, \mathrm{k}}+\mu_{93}
$$

Stage 2:

$$
\mathrm{kWh}_{95, \mathrm{i}}-\mathrm{F}_{92}\left(\mathrm{kWh}_{92}, \Delta \mathrm{CDD}_{92}\right)=\sum_{\mathrm{m}} \beta_{\mathrm{m}}^{\prime} \mathrm{Eng}_{\mathrm{m}}+\sum_{\mathrm{k}} \eta_{\mathrm{k}}^{\prime} \mathrm{Chg}_{\mathrm{i}, \mathrm{k}}+\mu_{92}
$$

with $\quad \mu_{92}=\lambda \mu_{93}+\sigma$
The last equation represents the assumption that there is correlation in usage between the two years. By including the estimated residual from the stage 1 model ${ }^{14}$ as an independent variable in the stage 2 model, the error term in the stage 2 model simplifies to a random error term σ and results in the estimation of a more accurate and stable final SAE model.

3.3.7 Billing Regression Analysis Results

This section presents the results of the billing regression analysis. Appendix C, pages C-12- C-14, presents a more complete discussion of the results of the regression analysis.

[^12]The coefficients of the engineering impacts in the stage 2 model are the SAE realization rates. Independent realization rates are estimated to provide PG\&E with results by business type and technology group. Exhibit 3-13 summarizes the final SAE model results estimated using 936 customers out of a total sample of 938 customers. Two customers-one hospital participant and one college/university nonparticipant-were excluded from the final model because they introduced great influence over the parameter estimates (toward increased impacts). In addition, these two customers have the highest annual usage among all customers in the analysis dataset. Exhibit 3-13 summarizes the independent variables used in the final stage 2 model, along with the t statistics and sample sizes available for each parameter estimate.

Exhibit 3-13
Billing Regression Analysis Final Model
Outputs

Parameter Description	Parameter Estimate	90\% Confident Bounds		t-statistic	Sample Sizes
		Lower	Upper		
Customer Specific Intercept from Stage 1	0.95	0.89	1.01	25.7	936
Estimates Realization Rates					
RE Program Standard Fluorescence					
Offices	-0.94	-1.10	-0.78	10.1	90
Retails	-0.82	-1.14	-0.50	5.2	84
Others	-0.70	-0.94	-0.46	6.9	177
RE Program HIDs					
Offices	-0.94	-1.21	-0.67	6.1	10
Retails	-0.75	-1.17	-0.33	3.9	28
Others	-1.60	-1.87	-1.33	6.1	27
RE Program Compact Fluorescence	-0.62	-1.33	0.09	2.3	175
RE Program Other Indoor Measures	-0.40	-2.63	1.83	0.7	105
Customized Program Indoor Measures	-1.57	-1.71	-1.43	12.0	20
RE/Customized Outdoor Measures	-0.54	-1.61	0.53	1.5	94
Change Variables (Multiplied by Pre-Usage)					
Add Lighting	0.131	-0.122	0.384	6.5	80
Replace Lighting (Outside Program)	-0.027	-1.124	1.070	1.5	38
Remove Lighting	-0.171	-1.119	0.777	1.7	6
Replace HVAC	-0.031	-0.689	0.627	2.5	60
Replace Other Equipment	-0.057	-1.142	1.028	1.5	52
Add Employee	0.038	-0.819	0.895	1.9	103
Reduce Employee	-0.053	-0.484	0.378	3.8	90
Installed Non-Lighting Program Measures	-0.055	-0.534	0.424	3.4	18

Baseline Model SAE Model

Number of Observation:	457	936
R-squared:	0.98	0.63

- The dependent variable is the difference between the actual and predicted 1995 usage using the 1992 baseline model.
- Customer-specific inter-year correlation is the residual term from the stage 1 model. The large t-statistics on this term suggest strong correlation between customers' usage from one year to another. Inclusion of this term contributes to a more stable model in the sense that there is very low correlation between all parameter estimates in the final model, especially the SAE realization rate parameters.
- Ten different realization rates are estimated, corresponding to business type and technology group segments. Only those measures with broad participation and relative high expected impacts can support a separate realization rate estimate. While all the realization rates have the right signs, some business types and technologies have much higher estimated impacts than others. All realization rate estimates are significant at the 95% confidence level (t-statistics greater than 2) except RE program other indoor lighting measures and RE/Customized outdoor measures, since these segments have high variation and relatively low impacts. This means that results from the billing regression analysis were used in the final evaluations results for all measures except RE program other indoor lighting measures and RE/Customized outdoor measures. Engineering model estimates were used for these two measure categories.
- All change variables have the expected signs. Only those change variables with a significant level greater than 0.15 are kept in the final model, through a stepwise regression procedure. Variables excluded from the model include changes in facility square footage, removal of HVAC equipment, and participation in the 1993 programs.

While QC investigated the use of TOU and load research demand data to support a similar SAE demand model, load information is not available in sufficient quantity to support such an analysis. The demand analysis conducted during this evaluation is based upon engineering models calibrated to on-site audit, spot-watt measurements, lamp counts, and lighting logger data. The spot- watt data are used to calibrate new equipment manufacturers' cut sheet data based upon actual measurements. The lamp counts are used to determine operating factors and burned-out lamp rates, pre- and post-installation. The lighting loggers are used to determine whether sites are actually operating in the "open" mode at the time of system peak. This is necessary, since many of the audits were conducted in the morning, and the lighting loggers confirmed selfreports that the facility was open or closed at the time of system peak.

3.3.8 Relative Precision Calculation

Relative precision at 90 percent and 80 percent confidence levels for the adjusted gross energy impact estimates are calculated at each of the SAE analysis segments. As mentioned above, a total of ten analysis segments were explicitly modeled, and the relative precision estimates based upon the model output are presented in Exhibit 3-14 below. In order to calculate the total program level adjusted gross impact and relative precision, the segment level results are weighted by their unadjusted engineering energy impact estimates in the following equations, and the results are presented in Exhibit 3-14.

- Analysis segment level relative precisions at the 90 percent confidence level were calculated using the following formula:

$$
\text { R } P_{1}=(1.645 * S t d E r r) / R R
$$

where

$\mathrm{RP} P_{i}$	$=$ the relative precision at analysis level
$S t d E m_{i}$	$=$ the standard error of the realization rate for each analysis
	level
RR	$=$ the realization rate for each analysis level

- From the analysis level relative precisions, the program level relative precision was determined by the following equation:

$$
\mathrm{RP}=\sqrt{\Sigma\left(P R^{*} M_{i}\right) 2} / \Sigma\left(R R^{*} M_{i}\right)=16 \%
$$

where
$\mathrm{Mi}_{\mathrm{i}}=$ the gross impact estimate at each analysis level
Exhibit 3-14
Relative Precision Calculation

SAE Analysis Level	Engineering Gros Impact Estimate (MWh)	SAE Realiztion Rate	Relative Precision at 90\%	Relative Precision at 80\%
RE Program Standard Fluorescents				
Offices	93,822	94%	16%	13%
Retails	30,756	82%	32%	25%
Others	83,607	70%	24%	18%
RE Program HIDs				
Offices	8,611	94%	27%	21%
Retails	10,810	75%	42%	32%
Others	15,302	160%	27%	21%
RE Program Compact Fluorescents	23,719	62%	71%	55%
RE Program Other Indoor Measures	$\mathbf{1 5 , 6 3 5}$	$\mathbf{4 0 \%}$	$\mathbf{2 2 4 \%}$	$\mathbf{1 7 5 \%}$
Customized Program Indoor Measures	22,117	157%	14%	11%
RE/Customized Program Outdoor Measure $\$$	$\mathbf{1 8 , 0 5 8}$	$\mathbf{5 4 \%}$	$\mathbf{1 0 7 \%}$	$\mathbf{8 4 \%}$
TOTALS	322,437	86%	16%	12%

Note: Shaded rows indicate statistically insignificant results at the 90% confidence level.

The realization rates presented in Exhibit 3-14 above are the gross SAE realization rates, that is the gross realized impacts as compared to the gross evaluation engineering estimates. In order to compute the final gross realization rates, the gross evaluation estimates compared to the gross ex ante estimates, three steps need to occur. First, the gross evaluation engineering estimates presented in Exhibit 3-14 are multiplied by the SAE realization rates in Exhibit 3-14. Second, for the segments for which the 90 percent confidence level was not achieved (outdoor lighting and other indoor measures), the evaluation calibrated model engineering estimates of impact are to be assumed as the evaluation estimates (this is the same as assuming a realization rate of 1.0 in the previous step). When these two steps have been carried out, a total gross evaluation energy impact of $295,746 \mathrm{MWh}$ is achieved (see Exhibit 4-1). Third, the evaluation estimate is divided by the gross ex ante estimate of impact (300,752 MWh total), resulting in the overall gross evaluation realization rate (gross evaluation estimates compared to the gross ex ante estimates) of 0.98 . These steps are carried out by segment in Section 4, Evaluation Results Summaries, of this report.

3.4 Net-to-Gross Analysis

Two methods are employed to estimate program net impacts. The first method estimates net effects through an analysis of energy impacts for lighting actions conducted outside the program; this approach is termed the "net billing model." The second method, a market analysis, involves the development of a model analyzing customer decisions in the lighting market. The market analysis models how participants first decided to purchase lighting equipment, and then, how they decided to purchase measures that correspond to those promoted by PG\&E's program.

The approach used to calculate program net effects uses self-reported responses from telephone survey data to estimate free ridership and spillover for lighting program participants, and spillover effects for nonparticipants. Results from each separate subanalysis are combined to generate NTG ratios.

First, the results from the net billing regression analysis are discussed.

3.4.1 Net Billing Regression Analysis

The net billing model produces results that support the estimates derived in the market analysis for two reasons. First, since some of the customers in the comparison group who replaced lighting outside of the program could have been free drivers, the net model produces an NTGs ratio that represents a lower bound of net impacts. ${ }^{15}$

[^13]Alternatively, the market analysis directly models spillover by analyzing reasons for equipment adoptions among both participants and nonparticipants. The confidence associated with this structural model for estimating spillover leads to a more supportable estimate of NTG. Finally, the market analysis produced results by technology group, whereas the net billing model only produced one overall estimate of NTG.

The specification of the SAE model includes a term that directly accounts for the impacts of equipment purchases made by customers in the comparison group. That is, the billing regression analysis supports the direct estimation of net program impacts as a consequence of the energy analysis. (This method has been termed "Approach A" in the work plan for this evaluation.) The key assumption underlying this approach is that equipment purchases outside the program represent a baseline for what would have happened in the absence of the program.
The specification of the net billing model includes an additional term that estimates the percentage of pre-installation usage that is saved if a customer in the comparison group implements a lighting retrofit. This parameter was estimated to be 2.7 percent based upon 38 customers (see Exhibit 3-13); and, it is interpreted as the natural savings that would have occurred in the absence of the program if participants had completed retrofits (i.e., a rate of natural conservation). Since participants saved an average of 11.7 percent of pre-installation usage, ${ }^{16}$ this translates into an NTG of (11.7-2.7)/11.7 or 77 percent. This parameter is measured with low precision-a t-statistic of only 1.5which means that the 90 percent confidence interval around the 2.7 percent is from- 0.7 percent to 6.1 percent, resulting in a range for the NTG ratio of 48 percent (lower) to 106 percent.

3.4.2 Free Ridership

A logistic regression model predicting free ridership was developed using self-report data in a pooled model incorporating data from all surveyed lighting program participants. ${ }^{17}$ The multivariate purchase decision model attempts to estimate the probability that a customers' revealed choices are consistent with those of a free rider or net participant.
resulting in similar parameter estimates in both cases.

[^14]Exhibit 3-15
Self-Reported Free Ridership: Superset of Model Variables

		Predicted Direction		
Model Variable	Wording of Question	Net Participant	Free Rider	In Final Model
	TIMING OF PLANS			
PERIOD_ BEFORE_ AWARE	How long were you considering <the measure> before you heard about the program?	shortmoderate period	longer period	
NO_PLANS	Wasn't planning on purchase until approached	yes	no	x
PERIOD_ AFTER_ AWARE	How long did you take to decide to participate after becoming aware of the program?	longer period	shorter period	x
$\begin{aligned} & \text { WAIT_NO_ } \\ & \text { PGM } \end{aligned}$	How long would you have waited to <take the measure> without the program?	longer period	shorter period	x
WAIT_FOR_ PGM	Did you delay a retrofit in order to participate?	no	yes	
	OPTIONS			
QUOTES	How many estimates or quotes did you obtain before purchasing your new equipment?	few	many	
STD_EQUIP	Did you consider purchasing standard-efficiency equipment?	yes	no	x
BROKEN	(Did the customer mention broken equipment?)	yes	no	
	PROGRAM INFORMATION AND BENEFITS			
PGE_CONTA	How many times a year do you have contact with your PG\&E rep?	few	many	
REBATE	(Did the customer mention the rebate?)	yes	no	
BILL_ SAVINGS	(Did the customer mention bill savings?)	yes	no	

FREE_RIDE Before you knew about the program, which of the following statements best describes your company's plans to <take the measure>?
had consi- planning to do dered, but it within the no plans next 12 months

The dependent variable in the model is based upon customer-reported plans in the absence of the program. A customer is coded as a net participant if reported plans indicate that the retrofit would not have been completed in the absence of the program, or would have occurred at a later date. ${ }^{18}$

Independent variables included in the initial model are also shown, along with their predicted effects, in Exhibit 3-15. Three categories of variables are used to explain free ridership. The first category consists of variables that involve the timing of a customer's plans for completing a retrofit, and the timing of their awareness of PG\&E's programs. The second category captures variables that characterize the choices customers faced in considering a retrofit. Finally, the third category describes some of the benefits provided by PG\&E's program and how they relate to a customer's purchase behavior. Exhibit 3-15 lists the variables that were considered for the free rider model and indicates those variables included in its final specification.

Timing of Plans - Four questions addressing the decision-making process and the length of time spent in various decision-making stages were included in the telephone survey. A question addressing length of time spent considering various equipment options, before becoming aware of the program, PERIOD_BEFORE_AWARE , was included in the model. Customers spending less time researching equipment before becoming aware of the program can be distinguished from free riders who had researched and chosen products before becoming aware of the program. While riskaverse customers may also have spent considerable time considering options, net participants (as a group) should spend less time seeking information than free riders. Contractor-driven net participants were expected to have spent no time shopping for lighting equipment before becoming aware of the program (NO_PLANS).

A second question addressing the length of time the customer spent considering the benefits provided by the program was also included in the model (PERIOD_AFTER_AWARE). Free riders, because they have essentially already made up their minds, should spend a short period of time assessing the benefits provided by the program. When presented with the option to install equipment or take some other efficiency action through the program, they are eager to do so. Contractor-driven net participants may also spend a relatively short period of time reaching a decision, but taken as a whole, net participants are expected to take more time to reach a decision to participate than free riders.

[^15]The third decision-making question included in the model addressed the number of years a customer would have delayed the equipment retrofit had the program not existed (WAIT_NO_PROGRAM). This question is intended to differentiate decisionaccelerated net participants from free riders.

A final question, WAIT_FOR_PROGRAM, was intended to serve as a flag identifying free riders based on prior purchase plans.

Options - In programs with aggressive target marketing by contractors and division representatives, participants may obtain few quotes for their prospective lighting purchases. Many customers will only obtain one quote from their initial program contact (often a lighting contractor) and then stay with one contractor. The number of quotes obtained (QUOTES) should discriminate between those customers who were driven into the program by tactical program marketing efforts versus those who were already active in the marketplace.

Customers who never considered standard-efficiency lighting measures prior to their purchase (STD_EQUIP) are likely free riders since the program was not a prime driver in their purchase of high-efficiency lighting equipment. Customers with older, failing equipment (BROKEN) may be driven into the market by the condition of their equipment, but once in the market, their equipment selection can be greatly affected by the program's contribution to the increased supply of energy-efficient lighting.

Program Information and Benefits - Customers in close contact with their division representatives have increased access to information about the benefits of participating (PGE_CONTACT). Customers in frequent communication with representatives may be "repeat" program participants whose likelihood of free ridership increases over time.

Program marketing efforts create a market for lighting retrofits and influence customer plans. Many customers indicated that they were drawn into the market by program marketing efforts. Program participants, more so than nonparticipants who also made lighting purchases, were more likely to echo program marketing messages such as a desire for bill savings (BILL_SAVINGS) or the program rebate (REBATE). These customers were drawn into the program by key program benefits, which provide the necessary motivation for customers who might not otherwise adopt program qualifying measures. These variables should be associated with decreasing likelihood of free ridership.

Details of the model-building process and final model selection appear in Appendix J. Pooled model results (the regression coefficients) were used to generate average free ridership rates for each technology group.

3.4.3 Spillover

The program spillover estimate contains two main components: a contribution from program participants and a contribution from nonparticipants.

Participants - Participant spillover effects were measured through simple self-report questions such as, "Since participating in the program, have you adopted any additional energy-efficiency recommendations?" Customers were asked about specific programqualifying technologies such as T-8 lamps with electronic ballasts. Responses were tallied, and the rates of the actions in the participant population were calculated and multiplied by ex post estimates of measure savings (average percentage reductions in usage per account). These were then credited to the RE program as additional program kWh savings. This was done for each lighting technology group and the program as a whole.

Nonparticipants - The nonparticipant, free drivership analysis focused on the extent to which program-aware nonparticipants adopted the same program-qualifying measures. These estimates provide a lower bound on program educational effects. Because the survey was written to probe for changes since January 1992, and was conducted during the summer of 1995, the rates of implementation were reduced to reflect an average, typical year's worth of installations. Implementation rates were then multiplied by the nonparticipant market size, or approximately 278,000 accounts.

General Methods. All intermediate effects were expressed as percentage reductions in annual usage. These were multiplied by each groups' average annual account size ${ }^{19}$, and the impacts (in kWh) were summed to yield a final net kWh . This was then divided by the ex post gross kWh estimate to yield the final NTG ratio. Exhibit 3-16 shows an example of the spillover effects included for compact fluorescent lamps. Percentages shown in the exhibit are annual usage reductions used in the net energy calculations. Note the participant spillover effects (in this case for compact fluorescent lamps) apply to the NTG for the technology under which a customer participated. ${ }^{20}$

[^16]Exhibit 3-16
Example: Spillover Effects Used for Compact Fluorescent Lamps

	Spillover Effects		
Technology	Participants' Within Measure Spillover	Participants' Other Measure Spillover	Nonparticipants' Spillover
Compact Fluorescent	2%		2%
Incandescent to Fluorescent		6%	
Efficient Ballast		1%	
T8 Lamps and Electronic Ballasts		3%	
Optical Reflectors w/ Fluor. Delamp		11%	
High Intensity Discharge		5%	
Halogen		5%	
Exit Signs		1%	
Controls		2%	

Caveats. By basing the program's market movement effects on the self-reports of aware nonparticipants we are both underestimating natural conservation among aware nonparticipant adopters and overestimating it among unaware nonparticipant adopters. Exhibit 3-17 shows how purchases outside the program can be divided into those reflecting the program's market movement effects and those reflecting natural conservation. These are shown alongside assumptions made in this analysis.

Exhibit 3-17
Representation of Nonparticipant Spillover Effects

In order to accurately measure the program's market effects, data from additional sources, in addition to self-reports, would be required. This stems from a major drawback of self-report data: namely, that there is no reason to believe that customers who made program qualifying retrofits outside the program would be able to accurately gauge the program's effect on structuring their choices. In other words, nonparticipants who make a program-qualifying purchase ${ }^{21}$ may have no idea of the

[^17]program's effect on the pricing and availability of equipment they purchase outside the program. The same can be said of nonparticipants or participants who report that they "would have adopted the measure without the program. " This is a common dilemma in measuring program net effects when relying solely on self-reports. The solution to the problem does not lie in increasingly detailed probes of participants and nonparticipants. Rather, the solution lies in looking elsewhere for data and in adopting multi-level models or approaches that capture the program's macro-level effects on the distribution, availability, and pricing of energy efficiency options.

3.4.4 Integrated Estimate of NTG Adjustments

The final step in constructing the NTG ratio is to sum up all contributing effects into one index. Program gross impacts are adjusted for free ridership and spillover to produce the combined best-estimate of program net impacts. These net impacts are estimated by adding together the net effect of program participants, ${ }^{22}$ program participant spillover effects, and nonparticipant spillover effects, as follows:

$$
\frac{\text { NTG }=\mathrm{Gl} *(1-\mathrm{FR})+\text { Spillover }_{\text {Part }}+\text { Spillover }_{\text {NonPart }}}{\mathrm{Gl}}
$$

where,

NTG	$=$ the Net-to-Gross Ratio			
GI	$=$ the Program Gross Impact			
FR	$=$ the Free Ridership Rate	\quad	Spillover $_{\text {Part }}$	$=$conservation actions
:---	:---			
Spillover $_{\text {NonPart }}=$	the estimated impact of nonparticipants' program- influenced energy conservation actions			

Because of the size of the remaining market (approximately 278,000 accounts) and its effect on NTG ratios, results shown in Section 4 are given for four separate estimates of the nonparticipant contribution. First NTG ratios excluding nonparticipant contributions ${ }^{23}$ are given. These are followed by NTG estimates that include the lowerbound estimate of nonparticipant contributions, the midpoint, and the 90 percent upper-bound nonparticipant spillover contribution. Summary tables in Section 1 show the decomposition of the final program NTG ratio into the following components:

[^18]- 1-FR
- Participant Spillover Effects
- Nonparticipant Spillover Effects

The process of applying the NTG adjustments to the gross energy and demand impacts is illustrated in Exhibits 3-18 and 3-19 below. The second column presents a summary of the gross ex ante impacts, and the gross ex post (evaluation) impacts. These impacts are then adjusted, on a row-by-row basis, by summing the appropriate free rider, participant spillover, or nonparticipant spillover adjustments and multiplying the sum times the gross impacts, to derive the net impacts in the two net columns. The realization rates, in the bottom section, are then generated by dividing the ex post impact by the ex ante impact.
While Exhibits 3-18 and 3-19 present results by end-use elements, the same method is used to estimate gross and net impact estimates that are presented by technology group in Section 4, Evaluation Results Summaries.

Exhibit 3-18
Net Energy Impact Summary

Technology Group	Gross	NTG Adjustments			Net	
	Gross Impact	Free Ridership Adjustment (1-FR)	Participant Spillover Adjustment	Nonparticipant Spillover Adjsutment	Net Impact without NP Spillover Adjustment	Net Impact with NP Spillover Adjustmen
	(MWh)	(Unitless)	(Unitless)	(Unitless)	(MWh)	(MWh)
Ex Ante						
Indoor Lighting	280,014	0.67	0.10		215,858	
Outdoor Lighting	20,738	0.67	0.10		15,958	
Indoor \& Outdoor Lighting	300,752	0.67	0.10		230,783	
Ex Post						
Indoor Lighting	277,688	0.87	0.03	0.18	250,058	300,043
Outdoor Lighting	18,058	0.82	0.06	0.27	15,891	20,745
Indoor \& Outdoor Lighting	295,746	0.87	0.03	0.18	267,059	320,778
Realization Rates (ex post/ex ante)						
Indoor Lighting	0.99	NA	NA	NA	1.16	1.39
Outdoor Lighting	0.87	NA	NA	NA	1.00	1.30
Indoor \& Outdoor Lighting	0.98	NA	NA	NA	1.16	1.39

Exhibit 3-19
Net Demand Impact Summary

Technology Group	Gross	NTG Adjustments			Net	
	Gross Impact	Free Ridership Adjustment (1-FR)	Participant Spillover Adjustment	Nonparticipant Spillover Adjsutment	Net Impact without NP Spillover Adjustment	Net Impact with NP Spillover Adjustmen
	(kW)	(Unitless)	(Unitless)	(Unitless)	(kW)	(kW)
Ex Ante						
Indoor Lighting	52,416	0.67	0.10		40,351	
Outdoor Lighting	124	0.67	0.10		92	
Indoor \& Outdoor Lighting	52,540	0.67	0.10		40,443	
Ex Post						
Indoor Lighting	62,389	0.87	0.03	0.19	56,181	69,000
Outdoor Lighting	782	0.83	0.06	0.27	696	884
Indoor \& Outdoor Lighting	63,172	0.87	0.03	0.18	57,044	69,884
Realization Rates (ex post/ex ante)						
Indoor Lighting	1.19	NA	NA	NA	1.39	1.71
Outdoor Lighting	6.31	NA	NA	NA	7.53	9.56
Indoor \& Outdoor Lighting	1.20	NA	NA	NA	1.41	1.73

Section 4

EVALUATION RESULTS SUMMARIES

This section summarizes the results of this evaluation, starting with the gross impact results, then discussing the net-to-gross (NTG) adjustments, and concluding with the program realization rates (ratio of evaluation findings to the ex ante program design estimates) for both gross and a net basis. Reasons for the deviations from the preconceived ex ante estimates are discussed in the presentation of program realization.

Where segment analysis could be supported, results are presented by technology and building segment. All results are segmented by program, Retrofit Express (RE) and Customized Incentives (Customized), and by indoor and outdoor applications. All results are aggregated to the entire program.

4.1 Gross Energy Impact Results

Exhibits 4-1 and 4-2 present the gross energy and demand impacts, respectively, from the evaluation for the RE and Customized programs for indoor and outdoor applications. The gross evaluation impacts for energy and demand by PG\&E costing period are covered in Appendix K.

Exhibit 4-1
Gross ENERGY IMPACTS
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

Program and Technology Group	Commercial Sector First Year ENERGY IMPACTS (MWh)										
	:ٌّ	$\begin{aligned} & \overline{\widetilde{I}} \\ & \stackrel{\sim}{0} \end{aligned}$			$\begin{aligned} & \text { B. } \\ & \text { O} \\ & 0.0 \\ & \hline \end{aligned}$					$\dot{\dot{\omega}}$	픙
Indoor Lighting											
RE Program											
Compact Fluorescent	3,068	675	773	1,046	150	805	1,235	6,627	55	272	14,706
Incandescent to Fluorescent	1,297	484	59	435	86	122	297	513	78	35	3,407
Efficient Ballast	1,182	292	463	425	972	24	144	11	55	226	3,795
T8 Lamps and Electronic Ballasts	40,380	15,483	3,838	8,505	5,309	383	8,039	1,557	2,142	2,139	87,775
Optical Reflectors w/ Fluor. Delamp	45,335	8,960	3,702	4,925	3,592	411	5,020	1,145	1,782	2,089	76,961
High Intensity Discharge	7,090	6,704	1,667	5,080	787	79	830	296	8,928	3,097	34,557
Halogen	1,005	1,403	410	105	109	427	621	1,773	107	167	6,128
Exit Signs	1,858	253	344	687	24	31	750	204	88	244	4,482
Controls	6,261	711	691	1,161	27	33	1,363	368	216	306	11,136
Other	-----	17	-----	-----	1	-----	-----	-----	-----	-----	17
RE Program Indoor Total	107,475	34,983	11,947	22,369	11,056	2,315	18,299	12,494	13,451	8,575	242,965
Customized Program											
Compact Fluorescent	378	82	-----	-----	96	-----	33	95	-----	-----	684
Standard Fluorescent	6,371	3,923	3,354	680	10,382	85	341	92	79	49	25,356
High Intensity Discharge	-----	388	-----	-----	89	-----	-----	-----	1,332	-----	1,808
Exit Signs	40	4	-----	-----	-----	-----	-----	-----	-----	-----	45
Controls	510	795	-----	-----	2,595	-----	-----	-----	-----	-----	3,901
Other	1,090	163	-----	-----	1,675	-----	-----	-----	-----	-----	2,929
Customized Program Indoor Total	8,390	5,356	3,354	680	14,838	85	374	187	1,411	49	34,723
Indoor Total	115,865	40,338	15,301	23,049	25,895	2,400	18,673	12,681	14,862	8,625	277,688
Exterior Lighting											
RE Program Exterior HID	2,923	4,679	580	3,132	463	698	607	1,933	916	1,281	17,211
Customized Program Exterior HID	86	-----	-----	-----	-----	-----	-----	-----	268	-----	354
Customized Program Traffic Lights	-----	-----	-----	-----	-----	-----	-----	-----	-----	493	493
Outdoor Total	3,009	4,679	580	3,132	463	698	607	1,933	1,184	1,774	18,058
Indoor and Outdoor Total	118,874	45,018	15,881	26,181	26,357	3,098	19,280	14,614	16,046	10,398	295,746

Exhibit 4-2
Gross DEMAND* IMPACTS
By Business Group and Technology Type
Commercial Indoor and Outdoor Lighting Applications

Program and Technology Group	Commercial Sector First Year DEMAND IMPACTS (kW)										
	$\underbrace{\text { ® }}_{0}$			"̈ 亏̈ in	$\begin{array}{r} \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{0} \\ 0 \\ \hline \end{array}$					in	-
Indoor Lighting											
RE Program											
Compact Fluorescent	1,036	225	210	414	32	201	324	1,379	23	65	3,909
Incandescent to Fluorescent	299	136	16	159	18	29	75	95	29	8	865
Efficient Ballast	274	83	121	163	199	6	36	2	21	50	956
T8 Lamps and Electronic Ballasts	9,348	4,423	1,004	3,115	1,110	92	2,029	289	812	478	22,700
Optical Reflectors w/ Fluor. Delamp	10,505	2,578	968	1,778	753	98	1,260	213	671	467	19,291
High Intensity Discharge	1,644	2,041	194	838	71	8	94	24	1,494	306	6,714
Halogen	236	432	48	18	10	45	71	144	18	16	1,038
Exit Signs	231	31	43	86	3	4	93	25	11	30	556
Controls	1,551	160	130	245	1	5	222	44	36	46	2,441
Other	-----	2	-----	-----	0	-----	-----	-----	-----	-----	2
RE Program Indoor Total	25,125	10,110	2,734	6,816	2,197	489	4,204	2,216	3,115	1,465	58,471
Customized Program											
Compact Fluorescent	51	13	-----	-----	8	-----	3	8	-----	-----	82
Standard Fluorescent	879	584	391	118	962	9	38	7	13	6	3,008
High Intensity Discharge	-----	53	-----	-----	8	-----	-----	-----	226	-----	287
Exit Signs	3	0	-----	-----	--	-----	-----	-----	-----	-----	4
Controls	40	62	-----	-----	201	-----	-----	-----	-----	-----	304
Other	86	13	-----	-----	134	-----	-----	-----	-----	-----	233
Customized Program Indoor Total	1,059	726	391	118	1,312	9	42	15	239	6	3,918
Indoor Total	26,184	10,836	3,126	6,934	3,509	498	4,246	2,231	3,355	1,471	62,389
Exterior Lighting											
RE Program Exterior HID	121	193	24	129	19	29	25	80	38	53	712
Customized Program Exterior HID	4	-----	-----	-----	-----	-----	---	---	11	---	15
Customized Program Traffic Lights	-----	-----	-----	-----	-----	-----	-----	-----	-----	56	56
Outdoor Total	124	193	24	129	19	29	25	80	49	109	782
Indoor and Outdoor Total	26,309	11,029	3,149	7,063	3,528	527	4,271	2,311	3,404	1,580	63,172

*Summer On-Peak demand impacts are defined for weekdays during the hour 3:00-4:00 PM, May 1-October 31.
The results in Exhibits 4-1 and 4-2 illustrate the following findings:

- RE indoor technologies represented more than 80 percent and 90 percent of the energy and demand impacts, respectively.
- Office and retail business types represent more than 55 percent of the impacts, with office being the largest single segment accounting for about 40 percent.
- The three technologies that made the largest contributions to impacts were the replacement of standard-efficiency fluorescent lamps and ballasts with modern T-8 lamps and electronic ballasts; the installation of optical reflectors in combination with delamping in fluorescent fixtures; and the installation of high-intensity discharge (HID) lamps and ballasts for less efficient technologies. These three technologies represented more than 70 percent of the program energy and demand savings.
- The lowest energy impacts were contributed by the restaurant building type, because of low participation in the program. Lighting quality requirements within this segment have been an explanation for the predominance of incandescent installations that overcome the limitations of dimming capability in energy-efficient technologies.
- The Customized program plays a small role in the overall impact, with just over 10 percent of the energy savings and approximately 6 percent of the demand savings being attributable to this program.
- Similarly, outdoor lighting is a small contributor, with just about 6 percent of the energy savings and approximately 1 percent of the demand savings.

4.2 Net-to-Gross Adjustments

The NTG results account for all of the market spillover effects (free ridership, participant spillover, and nonparticipant spillover) into estimates by measure, and an overall estimate for the program. The market analysis NTG approach discussed in Section 3 is the method that produced these results because of their higher reliability, and the fact that they could support measure-level analysis.

Exhibit 4-3 presents the NTG values by technology, along with the 90 percent confidence intervals, without nonparticipant spillover and with nonparticipant spillover. The estimates are presented this way because of the large effect that nonparticipant spillover can have on the NTG values.

Nonparticipant spillover accounts for the percentage of customers who were not participants but installed high-efficiency measures because of the presence of the program. This effect is determined by assessing the percentage of the nonparticipant population who installed high-efficiency measures because of the presence of the program, then multiplying this percentage by the nonparticipant population. Since the nonparticipant population is large, a small percentage of nonparticipant actions can create a large spillover effect relative to the program impact.

While QC computed and presents NTG estimates without and with nonparticipant spillover, we are convinced that nonparticipant spillover exists, and that the values
presented including nonparticipant spillover are the best estimates of the NTG adjustments.

Exhibit 4-3

NTG Adjustments by Technology Type

Technology	Without NP Spillover		
	Lower 90\%	Midpoint	Upper 90\%
Compact Fluorescent	1.00	1.01	1.02
Incandescent to Fluorescent	0.83	0.89	0.95
Efficient Ballast	0.92	0.93	0.94
T8 Lamps and Electronic Ballasts	0.91	0.92	0.94
Optical Reflectors w/ Fluor. Delamp	0.95	0.96	0.96
High Intensity Discharge	0.86	0.88	0.90
Halogen	0.83	0.89	0.95
Exit Signs	1.02	1.08	1.14
Controls	0.89	0.93	0.96
Other	0.83	0.89	0.95
RE Program	0.92	0.93	0.93
Customized Program	0.70	0.73	0.76

	With NP Spillover		
Technology	Lower 90\%	Midpoint	Upper 90\%
Compact Fluorescent	1.01	1.45	1.99
Incandescent to Fluorescent	NA	0.89	NA
Efficient Ballast	0.93	2.00	2.00
T8 Lamps and Electronic Ballasts	0.96	0.19	1.50
Optical Reflectors w/ Fluor. Delamp	0.88	1.17	1.02
High Intensity Discharge	NA	0.89	1.51
Halogen	1.08	1.45	NA
Exit Signs	NA	0.93	NA
Controls	NA	0.89	NA
Other	0.93	1.13	1.34
RE Program	NA	0.73	NA
Customized Program			

Several of the technology-specific estimates deserve individual discussion.

- Compact Fluorescents - Net estimates for compact fluorescent lighting were increased by two major contributions. First, program participants who installed compact fluorescent lighting through the program also reported installing T-8 lamps after participating. Additionally, 0.1 percent of nonparticipants surveyed also reported installing compact fluorescent lighting. Because the size of the nonparticipant market exceeds 270,000 accounts, the nonparticipant contribution drives the final NTG estimate to 1.45 .
- Exit Signs - Ten percent of the customers who installed exit signs through the program were also estimated to have installed compact fluorescent lighting outside the program after participating. Nonparticipant spillover contributions further increased the NTG for LED exit lighting.
- Electronic Ballasts - More free driver nonparticipants installed electronic ballasts outside the program than customers within the program. This effect caused the NTG for electronic ballasts to exceed 2.0.

4.3 Net Impacts

Exhibits 4-4 and 4-5 present the net energy and demand impacts, respectively, from the evaluation for the RE and Customized programs for indoor and outdoor applications.

Exhibit 4-4
Net ENERGY IMPACTS
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

Program and Technology Group	Commercial Sector First Year ENERGY IMPACTS (MWh)										
	:ٌّ	$\begin{aligned} & \overline{\widetilde{I}} \\ & \stackrel{\sim}{0} \end{aligned}$			$\begin{aligned} & \text { B. } \\ & \text { O} \\ & 0.0 \\ & \hline \end{aligned}$					$\dot{\dot{\omega}}$	픙
Indoor Lighting											
RE Program											
Compact Fluorescent	4,461	981	1,124	1,520	218	1,171	1,795	9,637	81	396	21,384
Incandescent to Fluorescent	1,161	433	53	389	77	110	265	459	70	32	3,048
Efficient Ballast	2,364	585	927	850	1,943	48	289	22	110	451	7,589
T8 Lamps and Electronic Ballasts	47,926	18,377	4,555	10,095	6,301	455	9,542	1,848	2,542	2,539	104,179
Optical Reflectors w/ Fluor. Delamp	44,585	8,812	3,641	4,844	3,533	404	4,937	1,126	1,753	2,055	75,689
High Intensity Discharge	8,290	7,839	1,949	5,940	920	92	971	346	10,438	3,621	40,405
Halogen	899	1,256	367	94	98	382	556	1,586	96	149	5,483
Exit Signs	2,688	366	497	994	35	44	1,085	296	128	353	6,486
Controls	5,792	658	639	1,074	25	30	1,261	340	200	283	10,302
Other	-----	15	---	-----	1	-----	-----	-----	-----	-----	16
RE Program Indoor Total	118,165	39,321	13,752	25,800	13,150	2,737	20,701	15,660	15,416	9,879	274,581
Customized Program											
Compact Fluorescent	277	60	-----	-----	70	-----	24	69	-----	-----	501
Standard Fluorescent	4,672	2,877	2,459	498	7,613	62	250	67	58	36	18,594
High Intensity Discharge	-----	284	-----	-----	65	-----	-----	-----	976	-----	1,326
Exit Signs	30	3	-----	-----	-----	-----	-----	-----	-----	-----	33
Controls	374	583	-----	-----	1,903	-----	-----	-----	-----	-----	2,861
Other	800	120	-----	-----	1,229	-----	-----	-----	-----	-----	2,148
Customized Program Indoor Total	6,153	3,927	2,459	498	10,881	62	274	137	1,035	36	25,462
Indoor Total	124,318	43,248	16,211	26,298	24,031	2,799	20,975	15,797	16,451	9,915	300,043
Exterior Lighting											
RE Program Exterior HID	3,418	5,471	678	3,662	541	816	709	2,260	1,071	1,497	20,124
Customized Program Exterior HID	63	-----	-----	-----	-----	-----	-----	-----	197	-----	260
Customized Program Traffic Lights	-----	-----	-----	-----	-----	-----	-----	-----	-----	361	361
Outdoor Total	3,481	5,471	678	3,662	541	816	709	2,260	1,268	1,859	20,745
Indoor and Outdoor Total	127,799	48,719	16,889	29,960	24,572	3,615	21,684	18,057	17,719	11,774	320,788

Exhibit 4-5
Net DEMAND* IMPACTS
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

*Summer On-Peak demand impacts are defined for weekdays during the hour 3:00-4:00 PM, May 1-October 31.
Overall, Exhibits 4-4 and 4-5 show an 8.5 percent increase in ex-post program energy savings, and a 10.6 percent increase in demand savings (when compared to Exhibits 4-1 and 4-2, gross impacts), as a result of the application of the NTG adjustments presented in Exhibit 4-3. The NTG adjustments modified the general impact picture very little. T8/electronic ballast, optical reflectors with decamp, and HID replacements for less efficient lamps still dominate the savings representing more than two thirds of the energy and demand impacts. On a building basis, office and retail segments still dominate impacts with more than 55 percent of the total impact for both energy and demand.

Close examination of these results identifies the following findings:

- Efficient Ballasts - The impact doubled, as predicted by the NTG adjustment, but this had little effect on the overall impact because it represents only 2 to 3 percent of the total impact.
- Hotel/motel - The hotel/motel business type showed a 24 percent increase in energy, and a 29 percent increase in demand impact due primarily to the high proportion of savings represented by compact fluorescent technology in this building segment.
- Grocery - The grocery business type showed a decreased in energy impact and an increase in demand impact because of the low NTG on custom measures. The grocery building segment had large estimated impacts in standard fluorescent custom measures. This measure had a substantial energy impact but a small demand impact.

4.4 Realization Rates

Exhibits 4-6 through 4-9 present the gross and net realization rates for energy and demand impacts for the RE and Customized program indoor and outdoor lighting applications. The four realization rate exhibits are analyzed in order, so that factors that contributed to the results can be discussed in order of impact, followed by market analysis results.

4.4.1 Gross Realization Rates for Energy Impacts

The gross energy realization rates are presented in Exhibit 4-6. These values represent, by segment, the ratio of gross impact evaluation findings to the gross ex ante program design estimate of savings. These realization rates illustrate how well the ex ante estimates predicted energy savings, before taking into account customer behavioral effects, both inside and outside the program.

Exhibit 4-6
Gross ENERGY Impact REALIZATION RATES
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

Program and Technology Group	Commercial Sector ENERGY Impact REALIZATION RATES\#										
	$\begin{aligned} & \text { U } \\ & \text { U } \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \text { d } \\ & j \\ & 0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		R U OU U				$\begin{aligned} & 00 \\ & 0 \\ & \text { out } \\ & \text { 0ut } \\ & \text { un } \end{aligned}$	\%	品
Indoor Lighting											
RE Program											
Compact Fluorescent	0.60	0.41	0.72	0.52	0.45	0.56	0.60	0.69	0.31	0.52	0.61
Incandescent to Fluorescent	1.11	0.90	0.87	0.70	0.75	0.84	0.94	1.29	0.53	2.62	0.97
Efficient Ballast	0.57	0.40	0.60	0.40	0.55	0.29	0.46	0.79	0.28	0.56	0.51
T8 Lamps and Electronic Ballasts	1.05	0.74	0.94	0.64	0.69	0.73	0.86	1.18	0.47	1.02	0.86
Optical Reflectors w/ Fluor. Delamp	1.18	0.83	1.09	0.69	0.74	0.84	0.97	1.30	0.59	1.36	1.02
High Intensity Discharge	1.15	0.70	4.46	1.94	1.60	1.82	2.15	2.99	1.22	2.10	1.21
Halogen	1.91	1.45	3.84	2.27	4.20	4.56	3.65	5.64	2.12	5.01	2.63
Exit Signs	1.07	1.00	1.39	1.06	1.06	1.06	1.05	1.09	0.98	1.04	1.08
Controls	0.92	0.96	1.45	0.63	0.71	1.23	1.35	1.56	0.95	1.03	0.96
Other	--	1.08	---	----	1.12	----	---	---	----	-----	1.08
RE Program Indoor Average	1.07	0.76	1.13	0.76	0.72	0.80	0.94	0.95	0.85	1.30	0.94
Customized Program											
Compact Fluorescent¥											
Standard Fluorescent¥											
High Intensity Discharge¥											
Exit Signs¥											
Controls¥											
Other¥											
Customized Program Indoor Average	1.69										
Indoor Average											0.99
Exterior Lighting											
RE Program Exterior HID	0.87	0.87	1.07	0.87	0.87	0.87	0.87	0.85	0.86	0.93	0.88
Customized Program Exterior HID	0.85										
Customized Program Traffic Lights	0.71										
Outdoor Average	0.87										
Indoor and Outdoor Average											0.98

\# The program design gross impact realization rates are defined as the ratio of evaluation impact to MDSS impact.
$¥$ Customized Incentives Program results are not reported by technology group because measure classifications are not carefully tracked in the MDSS.

Overall, Exhibit 4-6 shows that the ex ante estimates are close to the gross impact estimates. The average realization rate for RE indoor applications is 0.94 , while Customized is 1.69 , resulting in a program realization rate of 0.99 for indoor lighting applications. When this is combined with the 0.87 realization rate for outdoor lighting, a weighted overall program realization rate of 0.98 results.

Segment level realization rates were not possible for Customized because the MDSS did not track ex ante estimates by measure technology.

The results presented in Exhibit 4-6 can be explained using information from the review of the ex ante estimates in conjunction with the impact analysis results. Explanations of the results by technology are as follows:

- Compact Fluorescents - The low program realization rates for compact fluorescent technology are a product of the billing regression analysis yielding a 62 percent realization on the engineering estimates. These results were significant at greater than the 90 percent confidence level. The primary segments for compact fluorescents were hotel/motel and office, representing 45 percent and 21 percent of the gross energy savings, respectively.
- The operating factors for this technology were estimated only for the office segment and were lower than expected. This adjustment was made in the engineering estimates for the office segment alone. The hotel/motel segment, a segment that was not included in the on-site sample because it represented only about 5 percent of the total ex ante impacts, was based upon ex ante estimates. The sample did not support independent analyses of the hotel/motel and office segments; therefore, the low average SAE realization rate for this must be attributed primarily to the hotel/motel segment.
- QC's experience has been that compact fluorescents in the hotel/motel segment are either placed in hallways that have 24-hour operation, or in guest rooms, where operation is erratic, and inspection and monitoring are not viable. The low realization rate results, therefore, because a significant number of the compact fluorescent lamps installed in the hotel/motel building segment were installed in guest rooms. Even for the other building types, lower operating factors than expected are likely, since compact fluorescents typically replace incandescent lamps in locations where occupancy is inconsistent.
- Efficient Ballast - The low gross program realization rates for the efficient ballast technology is a result of an error in the MDSS. The MDSS applied the per-fixture ex ante savings value to lamp counts for a portion (1993 program applicants) of the measures tracked. This resulted in ex ante estimates in the MDSS that were approximately 100 percent higher than they should have been.
- Halogen - The high realization rates for the halogen technologies are a result of the ex ante estimates for this technology assuming a short lamp life, with the lamp being replaced with a conventional light at the end of the original lamp life. No evidence of this practice was found in the field nor detected in the billing regression analysis. These high realization rates have a small effect on the overall realization rates because the energy impact of this technology accounts for only 2 percent of the total.
- Fluorescent Technologies, Low Billing Regression Realization Rates - The low realization rates for retail, school, grocery, and restaurant business types are a direct
result of low realized impacts detected in the billing regression analysis for fluorescent technologies. Other than that ex ante estimates for this technology may have been derived from unrealistic assumptions, no specific reasons explaining this result could be found.
- High-Intensity Discharge - The high realization rates reported for many building types under the HID technology type are the result of inexplicably low MDSS figures. An attempt to reproduce the MDSS estimates, based upon the ex ante input values and participation numbers, resulted in considerably higher values than those reported in the MDSS.

4.4.2 Gross Realization Rates for Demand Impacts

The gross demand realization rates are presented in Exhibit 4-7. These values represent, by segment, the ratio of gross impact evaluation findings to the gross ex ante program design estimate of savings. These realization rates illustrate how well the ex ante estimates predicted demand savings, before taking into account customers' actions within the lighting market.

Exhibit 4-7

Gross DEMAND* Impact REALIZATION RATES
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

* Summer On-Peak demand impacts are defined for weekdays during the hour 3:00-4:00 PM, May 1-October 31.
\# The program design gross impact realization rates are defined as the ratio of evaluation impact to MDSS impact.
$¥$ Customized Incentives Program results are not reported by technology group because measure classifications are not carefully tracked in the MDSS.
§ In general, MDSS impacts for exterior lighting systems are zero, with only limited exceptions to this rule.
Overall, the gross demand estimates presented in Exhibit 4-7 are 20 percent higher than the ex ante values. The two primary reasons for this difference are higher operating factors (through lamp counts) than the operating factors used in the ex ante estimates were observed; and the evaluation estimates include HVAC interaction, which was not accounted for in the ex ante values.

Some of the results presented in Exhibit 4-7 can be explained using information from review of the ex ante estimates and the evaluation engineering and billing regression analyses. Specific comments and justifications for the results presented in Exhibit 4-7 are as follows:

- Compact Fluorescents - The lower realization rates are due to lower operating factors observed for this technology during field inspections. These operating factors are closer to the operating factors used in the ex ante estimates.
- Efficient Ballast - The low gross realization rates reported for the efficient ballast technology is a result of an error in the MDSS. The MDSS applied the per-fixture ex ante savings value to lamp counts for a portion (1993 program applicants) of the measures tracked. This resulted in ex ante estimates in the MDSS that were approximately 100 percent higher than they should have been.
- High-Intensity Discharge - The high realization rates reported for many building types under the HID technology type are a result of mistakes in the MDSS figures for this technology, as described above.
- Halogen - As previously discussed, the high realization rate for the halogen technologies results from ex ante estimates for this technology, which are based on a short lamp life, with the lamp being replaced with a conventional light at the end of the original lamp life.
- Grocery - The high realization rate on grocery building type is due to high operating factors (as observed during inspections through lamp counts), and high diversity factor (high percentage of stores open at peak hour).
- Schools - The low realization rate is a result of low diversity factor for schools (a high percentage of schools closed at summer peak hour).
- Hotel/motel - The low realization rate is a result of the low realization rate for compact fluorescent technology, which represents more than half of the demand impact in this building type.
- Exterior HIDs - The wildly high realization rates for this technology are a result of the ex ante peak demand impact estimates being zero for most applications of this technology. While this is reasonable in theory, field inspections found that many exterior lighting applications are on during peak hours. The extremely high realization rates result from the extremely conservative impacts entered in the MDSS for this application.
- Traffic Lights (red only) - The MDSS value for traffic lights does not account for the fact that red traffic lights are on less than 100 percent of the time. The engineering estimates used a conservative diversity factor of 50 percent, resulting in the 0.50 realization rate. Alternatively, the energy estimate reflects the somewhat higher diversity factor (66 percent), based upon a Department of Transportation study.
- Controls - The estimated impacts for controls are low because QC could not develop a good demand estimate based upon the data available. As a result, QC assumed a conservative ex post demand value for this extremely small segment impact.

4.4.3 Net Realization Rates for Energy Impacts

The difference between the gross and net realization rates is substantial. This is because of the differences between the ex ante and the ex post estimates of the NTG adjustment. The ex ante estimate varied between 0.72 and 0.78 , depending upon the segment. As can be seen from Exhibit 4-3 above, the NTG estimates vary between 0.73 and 2.0, depending upon the technology, resulting in an overall estimate of 1.13 for RE and 0.73 for Customized. As Exhibit 4-1 and 4-2 show, RE represents about 90 percent of the lighting impact for both energy and demand. These NTG adjustment differences result in a 42 percent increase in energy and a 44 percent increase in demand impact.

The net energy realization rates are presented in Exhibit 4-8. These values represent, by segment, the ratio of net impact evaluation findings to the net ex ante program design estimate of savings. The realization rates illustrate how well the ex ante estimates predicted energy savings, after taking into account customers' actions within the lighting market.

Exhibit 4-8
Net ENERGY Impact REALIZATION RATES
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

Program and Technology Group	Commercial Sector ENERGY Impact REALIZATION RATES\#										
				$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \text { BU心. } \\ & 0.0 \\ & 0.0 \end{aligned}$					$\dot{\text { 号 }}$	\%
Indoor Lighting											
RE Program											
Compact Fluorescent	1.13	0.77	1.36	0.98	0.86	1.05	1.14	1.30	0.59	0.98	1.15
Incandescent to Fluorescent	1.28	1.04	1.02	0.82	0.87	0.98	1.10	1.50	0.62	3.04	1.12
Efficient Ballast	1.48	1.04	1.55	1.03	1.44	0.76	1.18	2.04	0.72	1.46	1.33
T8 Lamps and Electronic Ballasts	1.62	1.15	1.45	0.98	1.07	1.12	1.32	1.81	0.72	1.58	1.32
Optical Reflectors w/ Fluor. Delamp	1.50	1.07	1.39	0.88	0.95	1.07	1.23	1.66	0.76	1.73	1.30
High Intensity Discharge	1.74	1.07	6.77	2.95	2.43	2.76	3.26	4.54	1.86	3.19	1.84
Halogen	2.22	1.69	4.46	2.63	4.88	5.30	4.25	6.55	2.47	5.82	3.05
Exit Signs	2.01	1.87	2.62	1.99	1.98	2.00	1.98	2.05	1.84	1.95	2.02
Controls	1.11	1.15	1.74	0.76	0.86	1.48	1.62	1.87	1.14	1.24	1.15
Other	-----	1.38	-----	-----	1.43	-----	---	-----	-----	-----	1.38
RE Program Indoor Average	1.53	1.11	1.69	1.14	1.12	1.23	1.38	1.55	1.27	1.94	1.37
Customized Program											
Compact Fluorescent $¥$											
Standard Fluorescent¥											
High Intensity Discharge¥											
Exit Signs¥											
Controls¥											
Other¥											
Customized Program Indoor Average	1.66										
Indoor Average											1.39
Exterior Lighting											
RE Program Exterior HID	1.32	1.32	1.62	1.32	1.32	1.32	1.33	1.29	1.30	1.41	1.33
Customized Program Exterior HID	0.84										
Customized Program Traffic Lights											0.70
Outdoor Average	1.30										
Indoor and Outdoor Average	1.39										

\# The program design gross impact realization rates are defined as the ratio of evaluation impact to MDSS impact.
$¥$ Customized Incentives Program results are not reported by technology group because measure classifications are not carefully tracked in the MDSS.

Overall, given the large difference between the NTG adjustment factors discussed above, and the generally high gross realization rates discussed earlier, it is not surprising that all technology and building segment average realization rates are above 1.0. Additionally, even though the realization rate for the Customized program was 0.73 , this was virtually the same realization rate as the ex ante estimate, resulting in only a minor decrease in impact estimate for the Customized program elements.

As discussed previously, some of the results presented in Exhibit 4-8 can be explained using information from the review of the ex ante estimates and the evaluation engineering, billing regression, and NTG analyses. Most of the comments discussed in relation to the gross realization rate estimates apply to the net realization rates. Some are repeated here for thoroughness. Specific comments and justifications for the net realization rates presented in Exhibit 4-8 are as follows:

- Compact Fluorescents and Efficient Ballast - The low gross realization rates discussed earlier for compact fluorescent and efficient ballast technologies have been more than offset by the difference between the ex ante and ex post NTG adjustments. It must be remembered that the low gross realization rates reported for the efficient ballast technology is a result of an error in the MDSS. The MDSS applied the per fixture ex ante savings value to lamp counts for a portion (1993 program applicants) of the measures tracked.
- Halogen - The high realization rates for the halogen technologies are driven by the gross impact results.
- Fluorescent Technologies, Low Billing Regression Realization Rates - The relatively low realization rates for retail, school, grocery, and restaurant businesses are still driven by the gross impact results.
- High Intensity Discharge - As noted before, these ex ante estimates are the result of MDSS data or calculation errors.
- Main Realization Rates Reasonable - The realization rates that represent the largest proportion (84 percent) of the total net energy savings (compact fluorescents, T8/electronic ballasts, optical reflectors with delamp, HID for less efficient technologies, and controls) all have realization rates between 1.15 and 1.33 with the exception of HIDs, where incorrect entry of data in the MDSS has caused artificially high realization rates.

Exhibit 4-9
Net DEMAND* Impact REALIZATION RATES
By Business Type and Technology Group
Commercial Indoor and Outdoor Lighting Applications

* Summer On-Peak demand impacts are defined for weekdays during the hour 3:00-4:00 PM, May 1-October 31.
\# The program design gross impact realization rates are defined as the ratio of evaluation impact to MDSS impact.
$¥$ Customized Incentives Program results are not reported by technology group because measure classifications are not carefully tracked in the MDSS.
§ In general, MDSS impacts for exterior lighting systems are zero, with only limited exceptions to this rule.

4.4.4 Net Realization Rates for Demand Impacts

The net demand realization rates are presented in Exhibit 4-9. These values represent, by segment, the ratio of net impact evaluation findings to the net ex ante program design estimate of savings. These realization rates illustrate how well the ex ante estimates predicted demand savings, after taking into account customers' actions within the lighting market. Since NTG estimates need to be applied to both energy and demand impacts, the market analysis that models customers' plans are a more
supportable set of results than the net billing analysis model that is derived exclusively from energy data.

As with the net energy estimates discussed above, the overall effect of the NTG adjustments results in high realization rates, especially since some gross realization rate estimates were already greater than 1.0.

Most of the specific comments applied to the net energy and gross realization rate discussions apply to the net realization rates as well. Those reasons not summarized in the previous section are listed below.

- Schools - The gross demand realization rate still drives the results for this business type, since the lower than average realization rate is due to low diversity factor for schools (a high percentage of schools are closed during summer peak hour).
- Exterior HIDs - As noted above, the wildly high realization rates for this technology are a result of the ex ante peak demand impact estimates being zero for most applications in this technology.
- Controls - The estimated impacts for controls are low because QC could not develop a good demand estimate based upon the data available. As a result, QC assumed a conservative ex post demand value for this extremely small segment impact.

4.5 Overview of Realization Rates

Overall, the net energy and demand impacts and realization rates are higher than predicted by the ex ante impact estimates. However, these high realization rates are well documented and supportable based upon the information developed during the evaluation. The ex post estimates are higher than the ex ante values because of the following:

- The evaluation field data collection established generally higher operating factors and longer operating hours than were assumed in the ex ante estimates.
- The billing regression analysis established solid (0.94 to 0.70) SAE realization rates (billing regression estimate divided by the evaluation engineering estimates) for the highest participation segments.
- The NTG adjustment estimation resulted in a mean estimate 40 to 45 percent higher than the conservative estimates use in the ex ante values.

In summary, PG\&E's ex ante estimate of energy savings was 39 percent below the ex post estimate of net energy savings, and the ex ante estimate of demand savings was 73 percent below the ex post estimate of net demand.

4.6 Program Design Estimates

The evaluation team offers the following comments and recommendations regarding the methods used to generate program design estimates (further details are available in Appendix B, pages B-25 through B-32):

- An extensive review of the program design algorithms and collected field data on building segment-specific operating hours and operating factors provided insights into these parameters. These full load hours account only for lighting system operation, not total impact -- thus isolating the lighting technology impacts from the HVAC program impact contributions. This information should be incorporated into the PG\&E design estimates by substituting the following adjusted full load hours into the current design algorithm by business type:

Exhibit 4-10
Full Load Hours by Business Type

Industry Group	Indoor Lighting Annual Hours of Operation	
	Evaluation Estimate	Program Design Estimate
Office	3,900	3,400
Retail	4,200	4,700
College/University	3,700	3,500
School	2,000	2,100
Grocery	6,800	7,000
Restaurant	4,800	4,800
Health Care/Hospital	4,900	4,000
Hotel/Motel	5,400	4,000
Warehouse	3,100	4,000
Miscellaneous	4,800	4,000

- The coincident diversified operating factors (CDOFs) generated by business typefor use in predicting demand during the on-peak season at the system peak hourshould be incorporated into the PG\&E design estimates. That is, these estimates should be substituted for applicable measures that currently have a coincident diversity factor (CDF) of 0.67 . The following are recommended CDOFs by business type:

Exhibit 4-11
CDOFs by Business Type

Industry Group	Indoor Lighting Peak Hour CDOF	
	Evaluation Estimate	Program Design Estimate
Office	0.78	0.67
Retail	0.90	0.67
College/University	0.61	0.67
School	0.46	0.67
Grocery	0.91	0.67
Restaurant	0.70	0.67
Health Care/Hospital	0.78	0.67
Hotel/Motel	0.64	0.67
Warehouse	0.78	0.67
Miscellaneous	0.71	0.67

- Program design first-year energy impact estimates for halogen lamps are generated under the assumption that these fixtures will burn out within the first year, and then either remain out or be replaced by another technology. On-site audit results have clearly shown that the burn-out rates in halogen lamps are small (less than 1 percent of the halogen lamps inspected were burned out), leading to the conclusion that halogen lamp failure rates are not abnormally prevalent one year after the initial installation. We recommend that retention studies carefully record the fate of halogen retrofit technologies, and that, based upon these results, consideration should be given to analyzing program design estimates using hours of operation that extend beyond the life of a halogen lamp.
- Program design demand impact estimates for exterior lighting systems assume no operation during daylight hours, and thus generally predict zero demand during the summer on-peak hour. Both on-site audit schedules and on-site lamp counts have discounted this hypothesis, showing that exterior lights do occasionally operate during daylight hours. Data supporting or discounting these findings should continue to be gathered, in order to better define the probability of exterior fixture operation during daylight hours.
- Program design demand impact estimates recorded in the MDSS (for customers participating in the Customized program indoor lighting measures) were typically found to contain the difference in connected load between the retrofit and existing system. This record of demand impact is inconsistent with the indoor lighting demand recorded for RE customers, where the difference in connected load is adjusted by a coincident diversity factor (typical CDF adjustment for applicable measures is 0.67). We recommend that demand impacts for applicable Customized program measures be adjusted in a similar fashion to ensure consistency in these MDSS records.

Section 5

RECOMMENDATIONS

Recommendations that would enhance future program performance and evaluation are presented in this section. Recommendations regarding evaluation methods are followed by those affecting the program's design. Finally, recommendations regarding the Protocols are offered.

5.1 Evaluation Methods

The evaluation team offers the following comments and recommendations regarding methods used in the 1994 evaluation:

- General Issues for Quantifying Spillover Effects - Because the nonparticipant market size is so large, including nonparticipant spillover effects in net-to-gross (NTG) calculations has a profound impact on the final NTG ratios. With the inclusion of nonparticipant effects, the NTG ratios can exceed 2.0. Therefore, the evaluation team recommends collecting additional data (such as trade ally surveys) every second or third year to gauge the program's market movement effects. This second source of data will help support the program's cost recovery claims for spillover effects.
- Trade on Established Information in Future Evaluations - This evaluation developed extensive observed and measured operating factor and operating hours information on the highest participation segments, in order to obtain the best estimates of savings for the largest contributors to savings. Less robust information was developed on medium- and low- participation segments. There is no reason to believe that the operating factor and operating hours information developed in this evaluation will change from year to year. QC recommends that PG\&E develop an understanding with the CPUC on the validity and use of this information in subsequent evaluations, so that the resources dedicated to subsequent evaluations can be used to improve information on the medium- and low- participation segments, or to develop information on other parameters, rather than just measuring the same parameters over again.

5.2 Measures Offered

The realization rate estimates in Section 4 (ratio of the evaluation estimated savings to the ex ante savings on a gross and net basis), allow for the identification of technologies or building types that either exceed or fall below expectations.

In general, the commercial lighting technologies offered exceeded program design expectations on both a gross and net basis. This is primarily a result of the ex ante estimates being based upon hours of operation shorter than those measured during the evaluation, and the application of ex ante NTG adjustments that were lower than the values established by the evaluation.
These exhibits allow identification of technologies or building types that should be reassessed in terms of their viability as technologies. This does not imply that these technologies are not valuable, but rather that the original estimate of design savings was higher than that actually achieved. The following segments should be reviewed for viability as part of the overall assessment.

- Schools showed low realization rates on both a gross and net basis for most technologies. Those technologies that showed realization rates above 1.0 were generally low- participation/low-impact measures for the schools segment. The evaluation impacts were low because both the hours of operation and the operating factors for the school building segment were substantially below those anticipated. In addition, schools tend not to operate during system peak (summer), and are less likely to be air-conditioned than other commercial buildings. We realize that eliminating schools may not be viable for other reasons.
- Compact Fluorescents showed low energy realization rates across all business segments. This is primarily a result of low, but significant, realized savings estimates in the billing regression analysis for all compact fluorescents, which were analyzed as a group. The primary segments for compact fluorescents were hotel/motel and office, representing 45 percent and 21 percent of the gross energy savings, respectively. Compact fluorescents are generally installed in fixtures that have traditionally used incandescent lamps, and as such, are more likely to be switched off when not needed (e.g., in bathrooms, closets, store rooms, etc.). The hotel/motel segment was not subject to on-site inspections because it represented only approximately 5 percent of the savings (energy and demand), and because our experience indicated that compact fluorescents in the hotel/motel segment are either placed in hallways that have 24-hour operation, or in guest rooms, where operation is erratic, and inspection and monitoring are not viable The realization rate for this technology is low because a significant number of the compact fluorescent lamps installed in the hotel/motel building segment were probably installed in guest rooms. If feasible, PG\&E should consider limiting rebates in the hotel/motel building type to common area applications.

All other technologies or building segments with low realization rates are discussed and explained in Section 4, Evaluation Results Summaries.

5.3 Protocols

After working with the ex post application of the Protocols for over a year, QC would like to offer the following recommendations:

- Clarify the Sample Size for the Retention Panel - Table 9A - Table 9A states as part of the footnote that "The utility should select the top ten measures ranked by net resource value or the number of measures that constitute the first 50% of the estimated resource value, whichever number of measures is less." The Protocols do not specify the size of the sample required to satisfy this "top ten or 50% " requirement. PG\&E has specified a retention panel size of 150 sites (probably based upon the number of on-sites that are being executed). Without a Protocol-based sample size, it is always a guessing game between the consultant and PG\&E as to what will satisfy the Protocol requirements for Table 9A.
- Coordinate Table 11 and Table 6 - The new Table 6 and Table 11 are inconsistent in their application in that Table 11 does not include the footnote indicating the optional nature of some of the inclusions. Tables 6 and 11 should be made consistent with the rest of the Protocols.
- Clarify Basis, Meaning, and Purpose for Square Footage Estimates (Table 6, C-4, C-5) - Tables C-4 and C-5 request reporting of results in "Designated Unit(s) of Measurement" for lighting of "load impacts per square foot per 1000 hours of operation." Under Participant Group, point 4 the square footage estimates is defined as "Square footage estimates (conditioned space and lighted area) used in the end use model(s) to produce estimates of pre installation usage, base year usage, and first year impacts must be based on (a) premise-specific data collected and used for purposes of establishing the terms and conditions of financial assistance, or, if not available; (b) premise-specific data collected on-site from all remaining customers in the participant group evaluation sample." This definition does not identify whether the square footage to be used in the computation is the retrofitted square footage, or the total facility square footage. In consultation with the PG\&E project manager, the total rather than retrofitted square footage, based upon on-site data collection, was applied. It may well be that other contractors are basing computations on retrofitted facility square footage, in which case they will develop totally different estimates. The definition and purpose of the square footage estimates should be clarified to assist the utilities and contractors in developing useful, meaningful Protocol- compliance estimates.
- Identify Meaningful Designated Units for Controls Measures - Designated units of load impact per square foot per 1000 hours of operation have no meaning for controls measures where the connected load does not change. These measures include time clocks, photo-cell controls, energy management systems, occupancy sensors, and any other control-oriented measures. While these represent a small portion of the program, it is unclear how the results should be reported. Modifications to the Protocols should be made to clarify how they should be reported.

1994 COMMERCIAL RETROFIT PROGRAM EVALUATION OF LIGHTING TECHNOLOGIES

FINAL IMPACT EVALUATION REPORT APPENDICES

Submitted to

Elsia Galawish

Market Planning \& Research
Pacific Gas \& Electric Company
123 Mission Street, Room 2437
San Francisco, CA 94177

Prepared by
QuANTUM CONSULTING INC.
2030 Addison Street
Berkeley, CA 94704

P696.321
February 1996

1994 COMMERCIAL RETROFIT PROGRAM EVALUATION OF LIGHTING TECHNOLOGIES

FINAL IMPACT EVALUATION REPORT APPENDICES

Prepared by

Quantum Consulting Inc.
2030 Addison Street
Berkeley, CA 94704

Principal Investigators
Robert Uhlaner
Timothy Caulfield
Joan Mancuso
Bing Xiao
Kris Bradley
Sam Shrauger
Michael Oing

February 1996

LIST OF APPENDICES

Appendix
A Sample Design Protocols
B Engineering Detailed Computational Methods
C Detailed Statistical Impact Analysis Approach and Results
D Final Participants Telephone Survey
E Final Nonparticipants Telephone Survey
F Final Participants On-site Instrument
G Final Nonparticipants On-site Instrument
H Participants Telephone Survey Response Frequencies
I Nonparticipants Telephone Survey Response Frequencies
J Purchase Decision Logistic Regression Model
K Gross Energy and Demand Impacts by Costing PeriodL Ex Ante Net-to-Gross RatiosM Commercial Refusal Comments
N Nonparticipant Refusal Comments

Appendix A

SAMPLE DESIGN PROTOCOLS

Appendix A

SAMPLE DESIGN

This appendix presents the existing data sources and sample design approach used for the evaluation of Pacific Gas and Electric Company's (PG\&E's) 1994 Commercial Lighting Technologies Evaluation It begins with a discussion of data sources used in the sample design, followed by detailed descriptions of the steps undertaken to design the telephone survey, on-site audit, and lighting logger samples for the impact and process evaluation. This appendix concludes with a discussion of the California Public Utilities Commission (CPUC) Evaluation and Measurement Protocols (the Protocols) requirements, and how those requirements are met in the current sample design.

A. 1 Existing Data Sources for Sample Design

A.1.1 Program Participant Tracking System

The participant tracking system for the Retrofit Express (RE) and Customized Incentives (Customized) Programs is maintained as part of the PG\&E Management Decision Support System (MDSS). It contains program application, rebate, and technical information regarding installed measures, including measure descriptions, quantities, rebate amounts, and ex ante demand, energy and therm saving estimates. The MDSS extract used in this evaluation is consistent with data used in the PG\&E March 31 Annual Earning Assessment Proceedings (AEAP) Report.

For the RE/Customized programs, participation was tracked at both application and measure levels, and stored in two separate databases, linked by application code and program year. Each application can cover multiple measures and accounts, and each measure is linked to a PG\&E electrical or gas service location where the measures are supposed to be installed. The account location is identified by its account number, or a unique seven-digit identification number (PG\&E's control number). Because they are not reassigned or changed, like the customer account numbers may be, control numbers are used to identify customer service locations and serve as key fields to link different datasets.

A.1.2 PG\&E Billing Data

Two installments of billing data were received for the evaluation. The first, received in March 1995, covers the period between January 1992 and February 1995. The second dataset was received in late November 1995, covering the period from September 1994
through September 1995. Depending upon the time period, the number of unique control numbers in the billing dataset ranged from 723k in 1992, to 758k in 1995. The billing dataset contains monthly energy-consumption information for all nonresidential electric accounts in the PG\&E service territory, as well as other billing-related information, such as customer name, service location, rate schedule, and Standard Industrial Classification (SIC) code. The final integrated multi-year billing dataset contains a total of 761,669 unique control numbers.

Preparation of the billing data for selection of participant and comparison group samples is discussed in greater detail in the sample frame sections that follow.

A. 2 Sample Design Overview

The sampling plan for the Commercial Lighting Evaluation is based upon analysis of 1994 program participation data and the PG\&E billing data. The goal of the design approach is to achieve the most efficient utilization of project resources, in order to meet the following objectives:

- Determine least-cost optimal sample allocation for first-year gross impact analysis, based upon sample size and evaluation accuracy requirements of the Protocols
- Allocate sufficient sample points to meet net-to-gross (NTG) and process evaluation objectives
- Reallocate available resources, wherever feasible, to focus on measures and/or program features deemed most important by PG\&E staff for future program design

The lighting evaluation sample design is based upon a nested sample design approach. This approach consists of four groups of customers in subsets, according to the type of information available. The largest customer group includes all of the commercial customers with monthly PG\&E billing data and participant tracking data who were rebated for eligible lighting technologies in 1994 (the "participant population"). The smallest group is the metered participants, who have the most comprehensive information available. These participants have lighting logger data, on-site audit data, telephone survey data, participant tracking data, and billing data. A similar nested sample design was also implemented for the comparison group, with the exception that logger data was not collected for that group. The advantage of a nested sample design is that it yields overlapping samples, which are used to compute dual estimates from the engineering and statistical analysis for the same group of customers, and therefore yields meaningful estimates of the realization rates.

A. 3 Sample Frame

The first step in sample design is to determine the sampling frame. In general, the sampling frame includes only those customers who are program participants, or likely targets of the program, rather than all customers in the population. It sets the stage for all data collection activities that follow, and determines the availability of billing and demand data for the remainder of the analysis. In addition, it prevents drawing samples outside the sampling frame.

In this evaluation, different analyses (e.g., impact analysis, free rider analysis, and spillover analysis) use different sampling frames, which are defined by analyzing what possible actions a customer in PG\&E's service territory could have taken during the study period. This classification provides the basis for the sample design. Without this kind of control, the SAE analysis change model cannot be estimated, since nonprograminduced changes cannot be separated from changes between periods attributable to other factors, such as weather and economic trends.

Exhibit A-1 illustrates a decision-tree analysis of possible program-related customer actions. The bottom-most groupings on the diagram illustrate the application of each type of action.

- Group A and B accelerated their decision to retrofit and purchased high-efficiency lighting, and all count as net program participants.
- Participants (Groups A, C, E) and nonparticipants unaware of the program (in Groups D, G, and, if any, in Groups B and F) will be used in the free ridership analysis.
- Spillover/free drivership will be analyzed by attempting to identify and assess reasons for adoption among customers in Groups B and F.
- The gross impact analysis will be best controlled for by customers in Groups J and I, since these are customers (both in and out of the market) who possess equipment similar to participants' pre-existing systems.

Exhibit A-1
Possible Customer Actions Related to Program Measures

A. 4 Sample Segmentation

Evaluation of the Commercial lighting program at the participant segment level allows more precise, and insightful, evaluation analyses than those undertaken at the aggregate $P G \& E$ system level. A participant segmentation scheme was developed to provide some homogeneous segments for analysis; it is, however, sufficiently aggregated for statistical analysis.

The program segmentation consists of two components: participant segmentation and technology segmentation. Based upon the available MDSS database, Exhibits A-2 through A-4 that follow present the final participant and technology segments used in the sample design, data collection, and program analysis and reporting.

The first step in the participant segmentation process grouped firms by business type, as defined in the MDSS. There are a total of 11 business types in the MDSS database; however, approximately 35 percent of the program projects were assigned to two miscellaneous categories, named ALL and Other (OTR). Participants in these two groups were redistributed on the basis of their Second Standard Industrial Classification (SIC2) code, and put into the existing nine business types, and a new, smaller miscellaneous group. The final data distribution, by business type, is presented in Exhibit A-2.

Exhibit A-2
Commercial Lighting Technology Participant Segmentation and Data Distribution in 1994

	Commercial										
	$\underbrace{\text { تٌ }}_{0}$		$\begin{aligned} & Z \\ & E \\ & \dot{Z} \\ & \stackrel{8}{0} \\ & \overline{0} \end{aligned}$	O 0 ¢ ¢	B U OU				U 0 0 On Un 3	+	ت
RE Program											
Expected Net kW Impacts (kW)	10,590	5,181	1,242	4,452	1,036	380	1,707	1,512	1,847	631	28,578
\% kW Impacts	30.1\%	14.7\%	3.5\%	12.7\%	2.9\%	1.1\%	4.9\%	4.3\%	5.2\%	1.8\%	81.2\%
Expected Net MWh Impacts (MWh)	57,387	37,494	6,573	17,279	11,229	3,260	10,810	11,325	11,664	5,045	172,068
\% MWh Impacts	27.2\%	17.8\%	3.1\%	8.2\%	5.3\%	1.5\%	5.1\%	5.4\%	5.5\%	2.4\%	81.6\%
Avoided Cost in 1994 (\$1,000)	37,108	23,665	4,047	12,540	6,687	1,515	6,556	6,534	7,991	3,087	109,729
\% Avoided Cost	27.6\%	17.6\%	3.0\%	9.3\%	5.0\%	1.1\%	4.9\%	4.9\%	5.9\%	2.3\%	81.5\%
\# of Paid Items in 1994	3,896	2,817	351	1,464	649	487	1,034	713	678	475	12,564
\# of Paid Projects in 1994	1,467	1,256	111	449	279	229	381	251	308	95	4,826
\# of Unique Master Accounts	1,260	1,150	39	383	260	216	293	206	282	78	4,167
Customized Program											
Expected Net kW Impacts (kW)	473	456	225	34	731	2	44	10	215	117	2,307
\% kW Impacts	20.0\%	19.3\%	9.5\%	1.4\%	30.9\%	0.1\%	1.9\%	0.4\%	9.1\%	5.0\%	97.5\%
Expected Net MWh Impacts (MWh)	2,229	2,788	819	68	7,147	8	247	77	1,163	737	15,283
\% MWh Impacts	14.3\%	17.9\%	5.3\%	0.4\%	45.9\%	0.1\%	1.6\%	0.5\%	7.5\%	4.7\%	98.1\%
Avoided Cost in 1994 (\$1,000)	1,477	1,364	538	77	3,072	5	115	32	540	520	7,740
\% Avoided Cost	18.8\%	17.3\%	6.8\%	1.0\%	39.0\%	0.1\%	1.5\%	0.4\%	6.9\%	6.6\%	98.3\%
\# of Paid Items in 1994	23	19	2	1	51	1	3	4	7	81	192
\# of Paid Projects in 1994	20	16	2	1	48	1	3	2	5	4	102
\# of Unique Master Accounts	20	14	2	1	47	1	3	2	4	4	98

Another segmentation element was the size of the firm. The annual energy consumption values were used to group customers into three usage/size categories:, small, medium, and large. The comparison group customers are then selected to mirror the underlying distribution of the participant target population. For a given business type, the lighting use area or schedule zone was used to obtain consistent estimates of operating hours and operating factors, as discussed earlier.

As shown in Exhibit A-2, three business types, office, retail, and school, account for more than 70 percent of the projected (ex ante) program avoided cost in 1994. The avoided cost of the Customized program is only about 6 percent of the avoided cost of the RE program.

A. 5 Technology Segmentation (RE Program)

For this evaluation, program measures have been reorganized into technology groups, combining technologies with similar energy reduction responses. This grouping strengthens the analysis by increasing the number of points and decreasing the variation per group.

Grouping by technology is important because the use of electricity, and therefore the program impacts, varies widely across technologies. Grouping common technologies reduces variation in the results.

The three elements of the technology segmentation are as follows:

- Technology Groups, presented in bold in Exhibit A-3, encompass all measures offered by the RE Program, which are expected to have similar energy saving responses. For example, all T12 to T8 retrofit measures are grouped together, despite the fact that 1) some are new fixtures, and some retrofitted fixture; and 2) different measures have different levels of projected energy savings. The projected energy savings differences will be accounted for in the engineering estimates, yielding similar per-unit responses.
- Measure Group, the second level of segmentation, groups measures by the PG\&E RE program measure description.
- Measure, the highest level of segmentation presented, is the actual measure offered by the PG\&E RE program.

In some instances, the measure-level descriptions appear repetitive or overlapping, because measures from both the 1993 and 1994 RE programs are included in the evaluation of measures paid in calendar year 1994.

The RE technology segmentation presented in Exhibit A-3 shows the highest level of segmentation, at the measure level for the commercial sector. While evaluation engineering estimates were developed at this level, final billing regression analysis results were only significant at selected technology-group levels.

T12 to T8 fluorescent technology retrofits, and mercury vapor lamp replacement with high-intensity discharge lamps accounted for more than 70 percent of the program design (ex ante) kW and kWh saving for the RE program.

A. 6 Technology Segmentation (Customized Program)

In general, the same technologies are used in custom applications or configurations in the Customized program. The same technology groups applied to the RE program are
also used in the Customized program. The measure groups and measures are, however, specific to the Customized program.

The diversity of measures and applications make segmentation much less important to the analysis of savings for the Customized program. The evaluation of savings for the Customized program relies heavily upon 1) comprehensive review of the paper documentation for the 102 program applicants; (2) grouping of similar projects into common technology groups, when possible; and 3) engineering estimation of savings based upon application information and data collected during on-site audits.

Review of the distribution of energy and demand savings across the measures listed in Exhibit A-4 reveals a much broader distribution of saving across measures. For example, T8/energy-efficient ballasts represent approximately 16 percent of the program design savings, as compared to approximately 30 percent for the RE program. This is not surprising for a customized incentive program accompanied by a comprehensive prescriptive program.

Exhibit A-3
Commercial Lighting Technology Segmentation - RE Program

Technology Segment Descriptions	PG\&E Measure Code		Expected Impacts	
			kW	MWh
Halogen				
All wattages	L1	8,647	171	514
< 45 watts	L60	1,117	22	67
>50 watts	L61	11,682	397	1,752
Compact Fluorescent Lamps				
Screw In CF				
All wattages	L2, L56	8,665	293	1,623
5-13 watts	L62	2,173	65	360
14-26 watts	L63	8,007	238	1,329
Screw In CF- Reusable ballast				
All wattages	L3, L58, L59	18,812	561	3,330
5-13 watts	L64	20,932	628	3,278
14-26 watts	L65	16,092	482	2,528
Hard Wired CF				
All wattages	L4	20,862	1,209	6,879
5-13 watts	L66	10,310	309	1,689
$14-26$ watts	L67	15,635	468	2,487
27-50 watts	L68	3,003	105	550
Incandescent to Fluorescent Fixture				
With Energy Saving Ballast \& T12 Lamps	L7	2,634	370	2,007
With Electronic Ballast \& T8 Lamps	L8	1,973	318	1,522
Exit Signs				
Incand. to Compact Fluorescents	L5	10,249	295	2,581
Incand. to LED or Electroluminescent Retrofit	L6	5,607	181	1,583
Efficient Ballasts Changeouts				
Electronic Ballasts				
2 Lamp Electronic Ballast	L14	74,834	942	5,311
3 Lamp Electronic Ballast	L15	3,780	58	313
4 Lamp Electronic Ballast	L16	17,528	340	1,794
T8 Lamps and Electronic Ballasts				
New Fixtures				
One-Lamp Fixture	L9, L117, L121	1,467	22	107
Two-Lamp Fixture	L10, L118, L122	20,538	265	1,345
Three-Lamp Fixture	L11, L123	15,221	337	1,576
Four-Lamp Fixture	L12, L120, L124	17,177	452	2,619
2'-1 U Tube or 2 lamps	L69	710	10	57
2'-2 U Tubes or 4 lamps	L70	2,022	52	305
2'-3 U Tubes or 6 lamps	L71	599	31	189
4'-1 lamp	L72	2,606	39	229
4'-2 lamps	L73	32,639	485	2,484
4'-3 lamps	L74	27,042	676	3,476
4'-4 lamps or 8'-2 lamps	L75	30,784	923	6,214

Technology Segment Descriptions	PG\&E Measure Code	$\begin{gathered} \text { \# of } \\ \text { Measures } \end{gathered}$	Expected Impacts	
			kW	MWh
Fixture Modif.- Replace Lamps and Ballasts				
Replace Lamps \& Ballasts - 2' Fixture	L21	46,675	327	1,897
Replace Lamps \& Ballasts - 3' Fixture	L22	24,503	189	1,048
Replace Lamps \& Ballasts - 4' Fixture	L23	1,701,262	13,420	70,720
Replace Lamps \& Ballasts - 8' Fixture	L24	67,921	1,019	5,844
Delamp Fluorescent Fixtures				
Fixture Modif.- Delamp and Reflector				
Removal - 2' Lamps \& Ballasts	L17	4,750	100	559
Removal-3' Lamps	L18	4,641	69	355
Removal-4' Lamps	L19	404,236	12,306	62,410
Removal-8' Lamps	L20	32,283	2,059	12,152
High Output T8 \& T10 Conversion w/ Delamp				
T10 \& Energy Saving Ballast	L76	317	7	42
T10 or T8 \& Electronic Ballast	L77	1,308	39	199
High Intensity Discharge				
Interior Compact HPS from Incand.				
0-100 watts HPS	L25	651	74	412
$0-35$ watts HPS	L78	53	4	19
36-70 watts HPS	L79	664	50	292
71-100 watts HPS	L80	473	49	240
Interior Standard MH from Merc. Vapor				
101-175 watts MH	L26	2,254	283	1,498
176-250 watts MH	L27, L37	5,977	2,552	13,997
251-400 watts MH	L81	5,084	2,107	12,036
Exterior HPS from Merc. Vapor				
0-100 watts	L28	7,840	0	3,615
101-175 watts	L29	3,418	0	3,362
176 watts \& greater	L30	5,105	11	12,652
Reduced Wattage Lighting	L13	138,184	845	4,032
Controls				
Time Clocks	L31	713	0	312
Occupancy Sensors				
72-350 watts controlled	L32	3,287	195	870
351-1000 watts controlled	L33	2,907	588	2,286
1000 watts and greater controlled	L34	769	209	1,053
Wall Mounted	L82	7,587	466	2,082
Ceiling Mounted	L83	5,704	1,181	4,589
Bypass/Delay	L35	694	72	280
Photocell	L36	1,882	0	185
Other Lighting	L114-L116	154	4	16
RE Program Total	ALL	2,894,643	48,971	279,149

Exhibit A-4
Commercial Lighting Technology Segmentation - Customized Program

Technology Segment Descriptions	PG\&E Measure Code	$\begin{gathered} \hline \text { \# of } \\ \text { Items } \end{gathered}$	Expected Impacts	
			kW	MWh
Halogen				
Low Voltage Halogen	182	0	0	0
Halogen Lamp Conversion	156	2	4	18
Compact Fluorescent Lamps	102	4	26	130
Incandescent to Fluorescent Fixture				
Incandescent to Fluorescent - Indoor	101	1	5	42
Incandescent to Fluorescent - Outdoor	120	4	0	314
Exit Signs	155	2	1	12
Efficient Ballasts Changeouts				
Modified Electromagnetic Ballasts				
Hybrid Ballasts	147	6	165	1,258
Primium Ballast (Core \& Coil)	148	2	56	387
Electronic Ballasts	149	4	677	2,937
T8 Lamps and Electronic Ballasts	146	20	407	2,624
Delamp Fluorescent Fixtures				
Fixture Modif.- Delamp and Reflector	181	1	16	181
Remove Lamps Reduce Lights	150	1	13	100
High Intensity Discharge				
Metal Halide Fixtures - Interior	104	1	2	10
HPS/LPS - Interior	105	2	98	563
HPS/LPS - Exterior	123	1	0	105
Reduced Wattage Lighting				
4' Energy Saver Fluorescent Lamps	142	0	0	0
8' Energy Saver Fluorescent Lamps	143	8	124	1,128
T8 Fluorescent Lamps	144	3	119	442
Lower Wattage Incandescent Lamps	152	1	2	5
Current Limiters	153	1	22	168
Controls				
Lighting Controls	160	4	47	896
Lighting EMS	164	13	0	1,156
Motion/Occupancy Sensors	166	1	30	118
Photocell	168	1	0	115
Bypass/Delay	169	1	0	11
Lighting Other				
Daylighting	191	0	0	0
Optical Reflectors	193	5	12	50
Lighting Other	151,195,199	131	1,743	8,826
Customized Program Total	ALL	220	3,568	21,596

The column titled "\# of Items" in Exhibit A-4 refers to the number of times that type of measure appeared on an application form. Because each application is different, the total number of measures is not a relevant index.

The distribution of measures reflects the allotment of these applications after reallocation based upon a review of the paper application files. As originally allocated in the MDSS, the "other lighting" category represented approximately 50 percent of the energy and load ex ante estimates of savings. Reallocation of these applications was important in order to include the maximum number of measures into the billing regression analysis, and maximize the transfer of realization rates from the billing analysis to similar measures in the Customized program.

A. 7 Sample Weighting Techniques

The 1994 Commercial Lighting Evaluation sample design allocated sample sizes in proportion to the program segment-level avoided cost, which served as the primary segment-level sample weights in the subsequent sample allocation.

A key step in developing the sampling plan is to calculate appropriate weights by the segments mentioned above. The purpose of this weighting scheme is to identify which technologies and/or business types in the RE and Customized programs account for the greatest impact on the program resource and shareholder values. For this evaluation, the primary prioritization relies upon program segment-level avoided cost reported in the MDSS database, which is a combination of expected program demand and energy savings weighted by PG\&E system marginal costs.

Another consideration in designing the sample is compliance with the Protocols. The sample allocation was designed to meet the sample size and relative precision requirements of the Protocols, as established in Table 5.

Finally, the sample allocation also reflects feedback from PG\&E program staff regarding future design of the program and the uncertainty of the current program estimates.

Exhibit A-5 presents the avoided cost, by business type and measure group, for the RE program.

Exhibit A-5
Commercial Lighting Technologies - RE Program
Percentage of Avoided Cost by Business Type and Measure Group

	Commercial										
	$$		ㄹ $\stackrel{y}{8}$ $\stackrel{0}{0}$ $\stackrel{0}{0}$ 0	$\overline{0}$ $\stackrel{8}{4}$ \dot{n}	$\begin{aligned} & \text { B. } \\ & \text { OU } \\ & \text { OU } \end{aligned}$						-
Halogen	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Compact Fluorescent Lamps											
Screw In CF	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%
Screw In CF- Reusable ballast	0.2\%	0.1\%	0.0\%	0.2\%	0.0\%	0.1\%	0.1\%	0.4\%	0.0\%	0.0\%	1.1\%
Hard Wired CF	1.0\%	0.2\%	0.2\%	0.4\%	0.0\%	0.2\%	0.4\%	2.4\%	0.0\%	0.1\%	5.0\%
Incandescent to Fluorescent Fixture											
With Energy Saving Ballast \& T12 Lamps	0.2\%	0.1\%	0.0\%	0.1\%	0.0\%	0.0\%	0.1\%	0.1\%	0.0\%	0.0\%	0.8\%
With Electronic Ballast \& T8 Lamps	0.2\%	0.1\%	0.0\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%
Exit Signs											
Incand. to Compact Fluorescents	0.4\%	0.1\%	0.0\%	0.2\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.1\%	0.9\%
Incand. to LED or Electroluminescent Retrofit	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%	0.0\%	0.6\%
Efficient Ballasts Changeouts											
Electronic Ballasts	0.8\%	0.3\%	0.3\%	0.5\%	0.6\%	0.0\%	0.1\%	0.0\%	0.1\%	0.2\%	2.8\%
T8 Lamps and Electronic Ballasts											
New Fixtures	2.0\%	1.6\%	0.2\%	1.3\%	1.4\%	0.0\%	0.2\%	0.2\%	0.5\%	0.1\%	7.5\%
Fixture Modif.- Replace Lamps and Ballasts	12.4\%	5.9\%	1.2\%	4.4\%	1.2\%	0.1\%	3.2\%	0.3\%	1.1\%	0.6\%	30.5\%
Delamp Fluorescent Fixtures											
Fixture Modif.- Delamp and Reflector	14.9\%	3.9\%	1.3\%	3.2\%	1.6\%	0.2\%	2.0\%	0.3\%	1.2\%	0.6\%	29.1\%
High Output T8 \& T10 Conversion w/ Delamp	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%
High Intensity Discharge											
Interior Compact HPS from Incand.	0.1\%	0.2\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.4\%
Interior Standard MH from Merc. Vapor	2.4\%	3.6\%	0.1\%	1.2\%	0.2\%	0.0\%	0.2\%	0.0\%	3.0\%	0.6\%	11.3\%
Exterior HPS from Merc. Vapor	1.0\%	1.6\%	0.2\%	1.1\%	0.2\%	0.2\%	0.2\%	0.7\%	0.3\%	0.4\%	5.7\%
Reduced Wattage Lighting	0.2\%	0.1\%	0.1\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%
Controls											
Time Clocks	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Occupancy Sensors	1.5\%	0.2\%	0.1\%	0.4\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%	0.1\%	2.5\%
Bypass/Delay	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%
Photocell	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Other Lighting	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Program Total	37.7\%	17.9\%	3.9\%	13.5\%	5.2\%	1.0\%	7.0\%	4.6\%	6.4\%	2.8\%	100.0\%

A. 8 Sample Sizes

The PG\&E C/I Lighting Program Evaluation sampling plan consists of a telephone sample of 900 customers (450 participants and 450 comparison group customers), an on-site audit sample of 300 customers (150 participants and 150 comparison group customers), and a lighting logger sample of 150 participants. The sample design complies with the Protocols and meets the program evaluation objectives. In this evaluation, the sampling unit is the PG\&E control number, which defines a unique service address. Applications in the MDSS database can cover more than one control number. The distribution of these sample points is presented in Exhibit A-6.

Exhibits A-7 through A-9 present the detailed RE program sampling for the telephone survey, on-site audit, and lighting logger samples, respectively. Because of the
relatively large number of measures, sample size and allocation will only be shown at the measure-group level.

Telephone Survey Sample Allocation by Segment - For each segment, the RE program sample design allocated the sample in proportion to the program-avoided cost by segment. This sample design (Exhibit A-7) concentrates sample points to segments that represent highest impact, in order to obtain the best estimate of impact for the largest portion of the population. This sample allocation, combined with the random sampling techniques within each segment, produces a stratified random telephone survey sample representing the RE lighting program-participant population (paid in 1994). In addition, the same process also generates a nonparticipant sample that is used as a comparison group for the evaluation.

On-site Audit Sample Allocation by Segment - Exhibit A-8 presents the RE program sample allocation for the on-site audit sample. Similar to the telephone survey sample, this sample was also structured to be approximately proportional to the program segment-level avoided cost estimates.

Lighting Logger Sample Allocation by Segment - The sample allocation for the lighting logger sample is presented in Exhibit A-9. This sample is not intended to be a random sample, nor strictly proportional to the program-avoided cost. The sample allocations were manipulated in order to assure adequate sample sizes for calibration of engineering models (see Appendix B).

Exhibit A-6
Commercial Lighting Evaluation Sample Allocation

Program	Sample Frame	Telephone Survey		On-Site Audit	Lighting Logger
		Lighting	HVAC Process Survey		
Participant	2,193	450	80	150	150
Comparison Group	4,039	450	0	150	0
TOTAL	6,232	900	80	300	150

*Based upon a preliminary analysis of the incomplete 1994 MDSS database.
tActual numbers will be determined when the billing data becomes available.

Exhibit A-7
Retrofit Express Program - Commercial Lighting Technologies

Telephone Survey Sample Allocation

	Commercial Sector										
	: تٌ	$\begin{gathered} \overrightarrow{7} \\ \stackrel{y}{0} \\ \end{gathered}$	己 己 ¿ $\stackrel{0}{0}$ 0	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { t. } \\ & \text { OU } \\ & \text { 0. } \end{aligned}$					نٌ	Ј
Halogen	0	0	0	0	0	0	0	0	0	0	0
Compact Fluorescent Lamps											
Screw In CF	0	0	0	0	0	0	0	0	0	0	0
Screw In CF- Reusable ballast	1	0	0	1	0	0	0	2	0	0	4
Hard Wired CF	4	1	1	2	0	3	2	11	0	0	24
Incandescent to Fluorescent Fixture											
With Energy Saving Ballast \& T12 Lamps	1	0	0	0	0	0	0	1	0	0	2
With Electronic Ballast \& T8 Lamps	1	0	0	1	0	0	0	0	0	0	2
Exit Signs											
Incand. to Compact Fluorescents	2	0	0	1	0	0	0	0	0	0	3
Incand. to LED or Electroluminescent Retrofit	1	0	0	0	0	0	1	0	0	0	2
Efficient Ballasts Changeouts											
Electronic Ballasts	4	1	1	2	3	1	1	0	0	0	13
T8 Lamps and Electronic Ballasts											
New Fixtures	9	7	1	6	6	0	1	1	2	0	33
Fixture Modif.- Replace Lamps and Ballasts	57	27	5	20	5	4	15	1	5	0	139
Delamp Fluorescent Fixtures											
Fixture Modif.- Delamp and Reflector	68	18	7	14	7	5	9	3	5	0	136
High Output T8 \& T10 Conversion w/ Delamp	0	0	0	0	0	0	0	0	0	0	0
High Intensity Discharge											
Interior Compact HPS from Incand.	1	1	0	0	0	0	0	0	0	0	2
Interior Standard MH from Merc. Vapor	11	16	1	5	1	3	1	0	13	0	51
Exterior HPS from Merc. Vapor	4	7	1	5	1	3	1	3	1	0	26
Reduced Wattage Lighting	1	0	0	1	0	0	0	0	0	0	2
Controls											
Time Clocks	0	0	0	0	0	0	0	0	0	0	0
Occupancy Sensors	7	1	0	2	0	0	1	0	0	0	11
Bypass/Delay	0	0	0	0	0	0	0	0	0	0	0
Photocell	0	0	0	0	0	0	0	0	0	0	0
Other Lighting	0	0	0	0	0	0	0	0	0	0	0
Program Participant	172	79	17	60	23	19	32	22	26	0	450
Comparison Group	172	79	17	60	23	19	32	22	26	0	450

Exhibit A-8
Retrofit Express Program - Commercial Lighting Technologies On-Site Audit Sample Allocation
Business Type|

Exhibit A-9
Retrofit Express Program - Commercial Lighting Technologies
Lighting Logger Sample Allocation

Measure G roup	Commercial Sector										
		$\begin{gathered} \bar{\pi} \\ \stackrel{y}{*} \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 8 \\ & 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \bar{\delta} \\ & \frac{8}{\zeta} \end{aligned}$	\%	$\begin{aligned} & \text { 若 } \\ & \text { E } \\ & \text { H } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { © } \\ & \frac{\mathbf{5}}{\mathbf{~}} \\ & \underline{I} \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	岗	\%
Halogen	0	0	0	0	0	0	0	0	0	0	0
Compact Fluorescent Lamps											
Screw In CF	0	0	0	0	0	0	0	0	0	0	0
Screw In CF- Reusable ballast	0	0	0	0	0	0	0	1	0	0	1
Hard Wired CF	2	0	0	0	0	0	0	4	0	0	6
Incandescent to Fluorescent Fixture											
With Energy Saving Ballast \& T12 Lamps	0	0	0	0	0	0	0	0	0	0	0
With Electronic Ballast \& T8 Lamps	0	0	0	0	0	0	0	0	0	0	0
Exit Signs											
Incand. to Compact Fluorescents	1	0	0	0	0	0	0	0	0	0	1
Incand. to LED or Electroluminescent Retrofit	0	0	0	0	0	0	0	0	0	0	0
Efficient Ballasts Changeouts											
Electronic Ballasts	3	2	0	0	0	0	0	0	0	0	5
T8 Lamps and Electronic Ballasts											
New Fixtures	3	2	0	2	2	0	0	0	1	0	10
Fixture Modif.- Replace Lamps and Ballasts	19	9	3	7	3	0	5	0	4	1	51
D elamp Fluorescent Fixtures											
Fixture Modif.- Delamp and Reflector	22	6	4	5	2	0	4	0	3	0	46
High Output T8 \& T10 Conversion w/ Delamp	0	0	0	0	0	0	0	0	0	0	0
High Intensity Discharge											
Interior Compact HPS from Incand.	0	0	0	0	0	0	0	0	0	0	0
Interior Standard MH from Merc. Vapor	4	5	0	3	0	0	0	0	4	0	16
Exterior HPS from Merc. Vapor	1	2	0	2	0	0	0	2	1	0	8
Reduced W attage Lighting	0	0	0	0	0	0	0	0	0	0	0
Controls											
Time Clocks	0	0	0	0	0	0	0	0	0	0	0
Occupancy Sensors	6	0	0	0	0	0	0	0	0	0	6
Bypass/Delay	0	0	0	0	0	0	0	0	0	0	0
Photocell	0	0	0	0	0	0	0	0	0	0	0
Program Participant	61	26	7	19	7	0	9	7	13	1	150
Comparison Group	0	0	0	0	0	0	0	0	0	0	0

A. 9 Billing Data Preparation

Once the sampling approach and segmentation scheme are determined, the next step is the preparation of the billing and tracking system data for sample selection. A final analysis dataset of billing data was created, consisting of all 6,037 lighting program participants paid in 1994, and 104,052 1994 nonparticipants. All unique lighting program control numbers, representing participants paid in 1994 and identified from PG\&E's MDSS, were retained in the final dataset, regardless of the quality of customer billing data. However, the nonparticipant control numbers that were retained were identified as eligible nonparticipants and screened for data quality using a number of criteria.

As noted above, the entire PG\&E nonresidential population was initially identified as the 754,928 accounts with PG\&E control numbers that were not in the set of 6,037 control numbers of lighting program participants paid in 1994. From this group of

754,928 accounts, potential nonparticipant accounts were identified as the 278,073 accounts with SIC codes matching any of the 589 unique SIC codes represented in the 1994 lighting program participant population. Of these 278,073 customers, 104,052 were identified as eligible for the final analysis dataset based upon the quality of their billing data. Criteria considered in the assessment of the quality of customer billing data quality are as follows:

- Presence of a billing rate schedule for the customer: Customers are required to have a rate schedule code for all years spanned by the billing data. There were 53,582 accounts rejected for failing to satisfy this criterion.
- Quality of usage readings for the customer for the period of January 1993 through February 1995: Customers are required to have non-missing, non-zero usage values for all months spanned by the billing data. Customers are also required to have realistic PG\&E revenues for the period. Realistic revenues are defined as revenues of at least $\$ 0.03$ per kWh , but no greater than $\$ 0.25$ per kWh . A total of 42,552 accounts were eliminated from eligibility for the final analysis database based upon this criterion.
- Cohesion of billing data across years: The original billing data was received by year ,i.e., the billing data for each calendar year was stored on a separate data tape. Data from different billing tapes were checked to ensure that the first month on each tape was immediately after the last month of the previous year's tape. A total of 52,667 accounts have mismatched billing data across tapes.
- Presence of multiple billing records for the customer in the 1993, 1994, or 1995 billing data: Customers with multiple records in any of the three billing years were ineligible for the final analysis dataset. This criterion removed 16,124 accounts from the final analysis database.
- Quality of read dates for the customer: Read dates are required to be monotonic, and within 180 days of the expected date range for the read date. Expected date ranges are determined from the year of the tape from which the date was read, as well as the order of the variable in that particular year's data. Based upon this requirement, 539 accounts were considered ineligible for the final analysis database.
- Absence of changes in key elements of the customer's billing data over the billing data period: Customers were selected only if the following remained constant over the entire January 1993 - February 1995 period:
- Corporation identification number
- Date on premises
- Date on system
- Meter number
- Rate schedule
- Premise identification number

- \quad Second SIC Code (SIC2)

- There were 8,557 accounts eliminated from eligibility for the final analysis database as a result of this screening requirement.

The final billing data analysis database, created using the methods detailed above, consisted of a total of 6,037 participant and 104,052 nonparticipant accounts. This analysis database is used in the generation of participant and comparison group telephone survey and on-site survey sample frames. The methods and stages of data attrition used in the generation of these sample frames are described below.

A. 10 Participant Sample Frame

This section details the reduction of the eligible participant population to a sample frame suitable for impact analysis. None of the criteria used to screen the sample are believed to have adverse impacts on the sample representativeness; therefore, the screening criteria preserve the transferability of the impact results to the population.

Unlike nonparticipant accounts, for which data attrition is a prerequisite for inclusion in the final billing data analysis dataset, all 6,037 lighting program accounts paid in 1994 were included in the analysis dataset, regardless of the quality of their data. For these accounts, all aspects of data attrition and screening are undertaken at the sample frame construction stage, using criteria similar to those used in the screening of nonparticipant accounts, together with several additional criteria. The final participant sample frame consists of 1,625 commercial customers drawn from the eligible population of 6,741 lighting program participants paid in 1994. Criteria considered in the assessment of the quality of participant account billing data are as follows:

- Presence of a billing rate schedule for the customer: Customers are required to have a rate schedule code for all years spanned by the billing data. Fifty-six customers were rejected for failing to satisfy this criterion.
- Quality of usage readings for the customer for the period of January 1993 through February 1995: Customers are required to have non-missing, non-zero usage values for all months spanned by the billing data. Customers are also required to have realistic PG\&E revenues for the period. Realistic revenues are defined as revenues of at least $\$ 0.03$ per kWh , but no greater than $\$ 0.25$ per kWh . There were 1,236 customers rejected for failing to satisfy this criterion.
- Cohesion of billing data across years: The original billing data was received by year, i.e., the billing data for each calendar year was stored on a separate data tape. Data from different billing tapes was checked to ensure that the first month on each tape was immediately after the last month of the previous year's tape. A total of thirteen accounts have mismatched billing data across tapes.
- Presence of multiple billing records for the customer in the 1993, 1994, or 1995 billing data: Customers with multiple records in any of the three billing years were ineligible for the final analysis dataset. No customers were rejected for failing to satisfy this criterion.
- Quality of read dates for the customer: Read dates are required to be monotonic, and within 180 days of the expected date range for the read date. Expected date ranges are determined from the year of the tape from which the date was read, as well as the order of the variable in that particular year's data. There were 213 customers rejected for failing to satisfy this criterion.
- Absence of changes in key elements of the customer's billing data over the billing data period: Customers were selected only if the following remained constant over the entire January 1993 - February 1995 period:
- Corporation identification number
- Date on premises
- Date on system
- Meter number
- Rate schedule
- Premise identification number
- Second SIC Code (SIC2)
- There were 779 customers rejected for failing to satisfy this criterion.
- Nonparticipation in the 1993 lighting program: Accounts included in the sample frame for the 1994 lighting program could not have participated in the 1993 program. There were 596 accounts eliminated from sample frame eligibility for this reason. However, this group of nonparticipants was later added back to the sample frame near the end of the survey data collection, based upon the participant definition in the Protocols, Appendix A. The sample selection procedure for this group of customers was designed to match the probability of selection for the rest of the customers in the sample frame, so that the combined sample will still be a random sample in each of the sample stratum.
- Participation in other incentive programs: Accounts that participated in other incentive programs in 1994 were excluded from eligibility for the lighting program sample frame. There were 176 accounts eliminated for this reason.
- PG\&E division representative deletion requests: Lists of customers in the sample frame were sent to the appropriate PG\&E division representative for approval. Based upon responses from the representatives, customers were deleted from the sample frame. These deletions removed 172 customers from eligibility for the sample frame.
- Reasonable usage across years and populated telephone numbers: Accounts are screened to ensure that the mean usage on the account for 1994 is no more than twice the mean usage on the account for 1993. Accounts are also screened to ensure they have reasonable phone numbers, and any accounts with no telephone number, or zeros in place of a number, are rejected from the sample frame. There were 1,171 accounts eliminated from eligibility for failing to meet this criterion.

The 1,625 participant accounts remaining following this screening process comprise the final participant sample frame used in the collection of telephone and on-site survey data.

A.11 Comparison Group Sample Frame

The comparison group sample frame consists of 4,039 commercial customers drawn from the eligible population of 104,052 nonparticipants in the 1994 lighting program. Since comparison group surveys were conducted only for customers in the commercial sector, the first step in creation of the sample frame is to limit eligibility to only those accounts having SIC codes representing commercial business activities. Further screening, based upon several factors, of the remaining 87,450 eligible accounts was undertaken to arrive at the final comparison group sample frame. The screening criteria used, and the number of customers eliminated as a result of each criterion, are detailed below.

- Excessive changes in usage between 1993 and 1994 billing years: Accounts are screened to ensure that the mean usage on the account for 1994 is no more than twice the mean usage on the account for 1993. There were 2,868 accounts eliminated for failing to meet this criterion.
- Geographic location of customers: Accounts are screened to insure that they fall within the geographic regions targeted for comparison group telephone survey and on-site survey data collection. There were 55,052 accounts eliminated for failing to meet this criterion.
- Customer presence in other survey samples: Accounts sharing PG\&E corporation identification numbers with any accounts in the sample frame for the HVAC program evaluation survey conducted by SBW, Inc., the lighting program evaluation participant survey sample frame, and the lighting program evaluation comparison group survey pretest sample frame were eliminated from eligibility for the lighting program evaluation comparison group sample frame. There were 3,095 accounts eliminated for this reason.

Following the data screening, the comparison group survey sample frame of 4,039 customers is randomly drawn from the 26,435 accounts that satisfied all of the screening criteria used in construction of the sample frame. In drawing the sample frame, targets are established for each business type and usage segment, so that the sample frame distribution, by business type and usage segment, is the same as that of the surveyed lighting program participant population. The drawing is conducted in this manner to ensure sufficient representation of each business type/usage segment combination in the sample frame and allow survey data collection in accordance with the sample design.

A. 12 Final Sample Sizes

The final sample sizes for the telephone, on-site, and lighting logger samples collected for the evaluation are presented in this section. Exhibit A-10 details the commercial sector telephone and on-site survey distributions by program (RE or Customized), and an indoor/outdoor technology classification.

Exhibit A-10
Telephone and On-Site Survey Data Collected by Program and End Use

Program	Total Surveys	On-Site Audits	On-Site Without Surveys	Analysis Dataset
Indoor Lighting (RE)	432	134	0	432
Indoor Lighting (Customized)	19	17	1	20
Outdoor Lighting (RE)	28	4	0	28
Outdoor Lighting (Customized)	0	0	0	0
Commercial Participant Total	479	155	1	480
Commercial Comparison Group	458	143	0	458

A.12.1 Telephone Survey Sample

Telephone surveys were collected for a total of 937 customers, 479 of which are participants, (451 indoor lighting participants, and 28 outdoor lighting measure participants) and the remaining 458 are in the comparison group. The telephone survey data is designed to provide insight into changes in the quantity and usage patterns of electrical equipment present at an account. The final sample allocation of the telephone survey sample, by technology and business type, is detailed in Exhibit A-11.

Exhibit A-11
Telephone Survey Sample Sizes by Business Type and Technology

	Commercial Sector										
	$\begin{aligned} & \ddot{\#} \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \text { e } \\ & \text { en } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { ou } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { h} \\ & \text { U } \\ & 0 . \\ & 0 \end{aligned}$					$\begin{aligned} & \dot{\oplus} \\ & \dot{\Sigma} \\ & \hline \end{aligned}$	
RE Indoor Measures											
Halogen	5	6	0	0	0	0	2	1	1	3	18
Compact Fluorescent Lamps	60	24	0	68	7	20	24	21	6	23	253
Incandescent to Fluorescent Fixture	6	5	0	4	0	0	3	0	0	3	21
Exit Signs	16	5	0	17	3	1	5	1	3	8	59
Efficient Ballasts Changeouts	21	11	0	17	22	0	8	0	3	6	88
T8 Lamps and Electronic Ballasts	105	102	2	97	22	8	40	3	26	32	437
Delamp Fluorescent Fixtures	53	57	1	28	11	5	17	0	13	13	198
High-Intensity Discharge	22	41	0	24	8	3	0	3	14	20	135
Reduced Wattage Lighting	13	7	0	10	4	0	4	0	2	3	43
Controls	11	16	0	10	4	0	5	5	8	11	70
Other Lighting	0	0	0	0	0	0	0	0	0	0	0
Customized Indoor Measures	3	6	0	1	16	1	1	1	1	2	32
RE/Customized Outdoor Measures	6	16	3	2	0	2	2	0	1	1	33
Participant Total	114	122	1	65	38	22	34	15	33	35	479
Comparison Group Sample	138	104	3	33	30	29	20	36	32	33	458

* Sum may exceed the total sample size because of participation in multiple measures.
** Survey self-report business type.

A.12.2 On-Site Survey Sample

A total of 291 on-site surveys were conducted for the commercial sector, with 155 participants and 143 comparison group customers. In accordance with the nested sample approach, 290 of these 291 surveys were conducted with customers who also completed a telephone survey. One customer completed the on-site survey, but did not complete the telephone survey. Distribution of the on-site survey sample, by business and technology type, is presented in Exhibit A-12 below.

Exhibit A-12
On-Site Survey Sample Sizes by Business Type and Technology

* Sum may exceed the total sample size because of participation in multiple measures.
** Survey self-report business type.

A.12.3 Logger Sample

A total of 236 loggers were installed within the sample of 155 on-site surveyed customers. Among them, 69 were installed at office sites, 54 in groceries, 42 in schools, 24 in retails, with the remaining 47 installed in other business types.

A. 13 Relative Precision

Given a sample design, the relative precision, based upon total annual energy use, reflects the uncertainty regarding the extent to which the allocated sample sizes are large enough to control for the population variance in terms of annual energy usage. The final achieved telephone survey sample (indoor lighting technology) is expected to yield an overall relative precision of 8.4 percent in terms of annual energy consumption.

Precision for the telephone sample is calculated using the following procedure:

- First, the 1994 annual energy consumption is computed for all participants in the analysis dataset. Since the Protocols' requirement for relative precision of samples is only applicable to the indoor lighting end use, only telephone surveyed or on-site audited indoor lighting participants (a total of 452 customers) were used in the calculation.
- Next, four strata are constructed based on customers' annual usage. Customers with annual usage in 0-40, 40-70, 70-90, and 90+ percentiles of the sample population are grouped into different strata. Exhibit A-13 presents the stratum-level sample size, sample weight, sample mean, and estimated standard errors.
- Then, the program level mean and standard error are calculated using classic stratified sample techniques. ${ }^{1}$ The functional relation can be best described in the following equations:

$$
\begin{aligned}
& \overline{\mathrm{m}}=\sum_{i} \mathrm{w}_{\mathrm{i}} * \overline{\mathrm{~m}}_{\mathrm{i}}=344,316 \mathrm{kWh} \text { with } \mathrm{w}_{\mathrm{i}}=\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}} \\
& \text { StdErr }=\sum_{i}\left(\mathrm{w}_{\mathrm{i}}\right)^{2} * \frac{\text { StdErr }}{\mathrm{n}_{\mathrm{i}}}=17,480 \mathrm{kWh}
\end{aligned}
$$

- Finally, the relative precision at 90 percent confidence level is calculated as

$$
\mathrm{RP}=\frac{1.645 * \text { StdErr }}{\overline{\mathrm{m}}}=8.4 \%
$$

Exhibit A-13
Telephone Sample - Relative Precision Levels

Stratum	Sample Size	Segment Weight	Mean 1994 Usage	Sample Estimated Standard Error
$\mathbf{1}$	180	0.40	29,027	1,304
$\mathbf{2}$	136	0.30	126,145	3,506
$\mathbf{3}$	90	0.20	483,877	22,950
$\mathbf{4}$	46	0.10	$1,950,032$	165,383
Total	452	1.00	344,316	17,480

[^19]The same calculation for the 458 comparison group customers yields a relative precision of 9.4 percent in terms of their 1994 annual energy consumption. This ensures that the sample design meets the requirement of a 10 percent relative precision in the Protocols for the commercial sectors, indoor lighting end use. However, it is important to note that this expected precision is based upon the annual energy usage, and does not imply the same level of precision for the final end-use impact evaluation results.

A. 14 Demonstration of Protocol Compliance

A.14.1 Sampling Procedures Adopted

The sample design used to evaluate the 1994 Commercial Lighting Program follows the rules established by the CPUC in the January 1995 revisions to the "Protocols and Procedures for the Verification of Costs, Benefits and Shareholder Earning from Demand Side Management Programs." Recent revisions to the Protocols-a draft dated 6/27/95-were incorporated wherever appropriate. The purpose of this section of the report is to identify compliance with these Protocols, with respect to the 1994 Commercial Lighting Program Evaluation activities.

A.14.2 Sample Definitions

The following definitions are provided to introduce the primary segments targetedboth a participant sample and a comparison group-to ensure experiment control:

- Participants - According to Table 5, part C, paragraph 1 of the Protocols, participants are defined as "those who received utility financial assistance to install a measure or group of measures during the program year."
- Comparison Group - A control group is defined as a group of customers that represents what would have happened in the absence of the program. According to Table 5, part D, paragraphs 3 \& 4, the comparison groups include both "customers who installed applicable measures" and "customers who did not install applicable measures," with no preference for either group (i.e., random or stratified random sample). This sample is therefore representative of the population, excluding only program participants during the evaluation year.

A.14.3 Overall Sampling Procedures

The commercial customer samples are driven by a primary data collection activity; in this case, the telephone surveys serve as the primary site-specific data collection elements that contribute to the analysis dataset. The commercial telephone sample was drawn to achieve a stratified random sample and optimally distribute the allocated sample points.

A.14.4 Detailed Protocol Sample Requirement

The commercial participant and comparison group samples are designed to meet the Protocol requirements in terms of analysis dataset sample size, precision of the results, availability of pre- and post-billing data contributing to the analysis dataset, and in ensuring cost-effective use of measured data.

- Analysis Dataset Sample for Commercial Participants: The Protocols require that a program with more than 450 participants has a randomly drawn sample sufficiently large to achieve minimum energy use precision of $\pm 10 \%$ at the 90% confidence level, and at least 450 contributing points in the analysis dataset.
- The 480 analysis dataset points, 452 of which were for customers with indoor lighting measures, were supplemented with 155 nested on-site points to ensure sample size compliance with Protocol requirements in Table 5, part C, paragraph 3. Data collection protocols are also met regarding minimum analysis dataset size, if primary site-specific data are collected on-site, as per Table 5, part C, paragraph 4 of the Protocols.
- Data collection efforts are further strengthened during on-site activities through the installation of lighting loggers. These devices record specific fixture operating profiles during the monitoring period, and serve to calibrate selfreported lighting operating schedules. Data collected in this way follows the participant protocol recommendations set forth in Table C-4, paragraph 1 of the Protocols.
- As discussed earlier, the sample collected for the commercial section, indoor lighting end use achieves a relative precision of 8.4 percent at a 90 percent confidence level, as required by the Protocols, Table 5, part C, paragraph 4.
- All 480 participant sample points were screened for bad billing or MDSS data to ensure each point eventually contributed to the analysis dataset. In addition, each participant chosen for the telephone sample is required to have at least nine months of post-installation billing data, and 12 months of pre-installation data, as per the Protocols, Table 5, part D, paragraphs 2 and 1, respectively.
- Analysis Dataset Sample for Commercial Comparison Group - The Protocols require that the comparison group sample "be drawn using the same criteria for participants," as per Table 5, part C, paragraph 6.
- The 458 analysis dataset points meet the sample size requirement in Table 5, part C, paragraph 3. The calculated relative precision of 9.4 percent at a 90 percent confidence level meets the precision requirement in Table 5, part C, paragraph 4.
- The commercial comparison group telephone sample is drawn based upon the similar distribution of participant sample, in terms of their business types and annual usage. Since lighting equipment characteristics are unknown for nonparticipants, no stratification was included for lighting equipment groups.
- To ensure compliance with comparison group protocols, the telephone survey sample frame is drawn to meet the billing data requirements of Table 5, part D, paragraphs 3 and 4 of the Protocols. All customers in the analysis dataset have billing data from January 1991 to September 1995, which ensures an adequate pre- and post-installation billing periods for customers who installed applicable measures between 1993 and 1994.

Appendix B

ENGINEERING DETAILED COMPUTATIONAL METHODS

Appendix B

ENGINEERING DETAILED COMPUTATIONAL METHODS

The technical approach and intermediate engineering results that support realized gross impacts in the 1994 Pacific Gas and Electric Company (PG\&E) Commercial Lighting Technologies Evaluation (Commercial Lighting Evaluation) are presented in this section. The purpose of a presentation of the engineering computations is to provide detailed intermediate results that either compliment or dispel significantly the current methods used to generate program design demand and energy impact estimates. Results are presented to ensure that future program design and evaluation activities will benefit from the engineering parameters generated during the 1994 program evaluation effort.

B. 1 Appendix B Structure

This appendix is structured as follows:

- The appendix begins with a presentation of the general approach used to generate both evaluation results and program design estimates. The purpose of a presentation of the engineering approach is to:
- Summarize and define each of the lighting end-use impact components that were used to generate final impact results
- Demonstrate key differences between the evaluation methods and those used to derive program design estimates
- Provide intermediate engineering results and discuss the data sources and methods used to derive each parameter
- Next, program design estimate methods that were used to generate impacts for the majority of the 1994 program applications are introduced. This discussion focuses on the methods used to derive impacts for the Retrofit Express (RE) Program.
- The evaluation approach is then presented, incorporating both of the general methodologies from Section 3 of this report, but simplifying that approach by introducing an hourly impact model.

Engineering Detailed Computational Methods

- Then, detailed derivations are presented for several key engineering parameters, including premise operating schedules, technology- and business type-dependent operating factors, and impacts caused by the interaction between lighting system heat gain, and heating and cooling system energy use.
- Next, engineering intermediate results that PG\&E may elect to incorporate in future program design efforts are presented.
- First, database estimates of fixture connected load are compared against measured fixture connected loads that were sampled during on-site audit activities. The purpose ofd this analysis was to determine if adjustments to database estimates of connected load were necessary, because of differences between field-measured fixture operating loads and those claimed in manufacturers' product literature.
- Then, the frequency of observed lamp burn-out is explored to highlight the importance of including these adjustments in all future program design estimates.
- Next, the existing fixture frequency is explored, both as observed during on-site data collection activities, and also according to assumed fixture replacement under program design guidelines.
- Then, evaluation estimates of annual fixture hours of operation are compared against parameter estimate assumptions, yielding results by technology group.
- Next, evaluation estimates of Summer On-peak coincident diversified operating factor (CDOF) are presented, yielding significant results by technology group.
- Lastly, evaluation estimate results are presented for heating and cooling energy and demand impacts caused by the retrofit of standard-efficiency lighting systems with high efficiency systems offered under the program.
- Then, the methods are described that were used to both classify and analyze 1994 program impacts for lighting retrofits installed under the Customized Incentives (Customized) Program.
- Finally, to summarize the engineering effort, RE-selected hourly impact profiles are presented by daytype, business type, and time-of-use (TOU) costing period B. 2 Engineering Gross Impact Evaluation Approach.

B. 2 Overview of the Evaluation Approach

This overview of the engineering approach will address the generic methodology used to estimate impacts for the majority of the lighting retrofits covered under the RE and Customized programs, and the data sources contributing to these estimates of energy and demand impact. More specifically, the following are addressed as follows:

- Lighting end-use parameters, which contribute to energy and demand impact estimates, are introduced using the impact decomposition approach.
- Data sources that contributed to each component of impact are then discussed. This introduction focuses on the accuracy of these contributing data elements, and the concept of the nested sample design that was used to transfer accurate data elements.

B.2.1 Introduction to the Impact Decomposition Approach

The general lighting model used to estimate most of the impacts under the RE and Customized programs were founded on the decomposition of lighting impacts into manageable engineering parameters. The impact decomposition was used to estimate unadjusted engineering impacts (UEI's) over a specified period of time-by season/daytype/hour-and is defined as follows:

UEIt $=[($ UOL $\times \mathrm{U} \times \mathrm{OFt}) \times \mathrm{T}] \times[1+\mathrm{HVAC}]$, where
$\mathrm{EOL}=$ the technology level maximum change in connected kW associated with a particular measure.
$\mathrm{U} \quad=$ the number of measure units installed for a particular application.
$\mathrm{OFt}=$ the operating factor which describes the percentage of full load used by a group of fixtures during a prescribed period of time, t.
$\mathrm{T} \quad=$ the time interval for which an impact is estimated; for most measures, the OF term is the engineering parameter that changes significantly over time. Time intervals for lighting estimates were single hours, segmented by hours "on" (open operating factor) and hours "off" (closed operating factor) schedules. ${ }^{1}$
HVAC $=$ the component of impact associated with both a net energy savings due to cooling and a net energy increase due to heating.

The process of analyzing each contributing element in this relationship with respect to time dependency is referred to in this approach as engineering model calibration.

[^20] segment-level results, and/or technology group segment-level results. Calibration of the lighting end-use engineering parameters yielded typical lighting hourly load shapes by daytype and season. We recommend incorporating these calibrated results in all future lighting program evaluation activities, specifically the engineering-based program design calculations prepared for cost-recovery activities.

Note that neither program design demand nor energy impact estimates include claimed credits for the indirect HVAC impacts associated with a reduction in internal heat gain (as a result of an efficient lighting retrofit).

B.2.2 Data Sources and the Nested Sample Design

The impact approach used several data sources to collect similar engineering parameters. The purpose of gathering like information from several sources was to ensure calibration of engineering parameters using the most accurate data gathered Exhibit B-1 depicts the nested sample design that was used to generate the most accurate estimate of engineering parameters, given certain constraints imposed by limited resources.

Exhibit B-1
Schematic of the Commercial Lighting Program
Data Collection Nested Sample Design

Resource constraints required that the most accurate, and therefore valuable, analytical data were gathered at a relatively small sample of sites, and that these data were then transferred to a larger samples of participants using leveraging techniques, whenever possible.

A good example of this calibration process using the nested sample design involves the use of logger information to calibrate on-site self-report lighting schedules, and likewise, the use of calibrated on-site self-report lighting schedules to calibrate the telephone sample self-report lighting schedules. The lighting logger sample provided information regarding typical daytype lighting profiles for fixtures operated within the on-site sample, by schedule group. Schedule groups are defined as groups of rooms and/or fixtures at a site that operate on a similar and unique schedule. Details

Engineering Detailed Computational Methods
regarding the derivation of calibrated operating schedules is covered in detail on pages B-12 and B-13 of this appendix.

B. 3 Program Design Impact Estimate Methods

B.3.1 Overview

The methods implemented to achieve 1994 RE program design impacts are introduced in this section ${ }^{2}$. The gross program design impacts that were generated using these methods are recorded in the Management Decision Support System (MDSS) database. These methods are introduced at this early stage in the engineering approach to enable the direct comparisons between evaluation and program design engineering parameters that appear throughout the remainder of this section. In this section, engineering parameters that were used to generate program design impact estimates are defined, including the following:

- Measure-specific, per-unit noncoincident demand impacts (the difference in fixture connected load pre- and post-retrofit) were used as inputs to both the energy and demand impact estimates.
- A Coincident Diversity Factor (CDF) is described, a parameter applicable to demand impact estimates.
- Annual hours of operation, defined by business type, were used to generate annual energy impact estimates.

Results are presented based on an effort to regenerate program design estimates by applying the methods described in this section. Several important discrepancies were found between the intended application of these impact methods and the gross impacts stored in the MDSS.

B.3.2 Noncoincident Demand Impact Calculations

All lighting estimates require the use of pre- and post-retrofit fixture connected loads or more typically, the change in fixture connected. This engineering parameter represents the UOL term in the impact decomposition approach. This change in lighting system connected load is referred to as the noncoincident demand impact, which is defined for each RE measure using the following formula:

$$
\begin{equation*}
k W_{N C P}=k W_{E}-k W_{R} \tag{1}
\end{equation*}
$$

[^21]Where:
kW ${ }_{\text {NCP }}=$ Per-unit noncoincident demand impact by measure
$\mathrm{kWE} \quad=$ Per-unit existing measure demand
$\mathrm{kW} \mathrm{R}_{\mathrm{R}} \quad=$ Per-unit retrofit measure demand
Exhibit B-2 provides a summary of the assumed change in connected load for the measures installed according to the 1994 RE document cited above. This difference in connected load is based upon both the measure definition specified under the RE program (and typical customer installations for each measure), and an assumed existing system that represents a typical customer configuration prior to retrofit. Each individual fixture connected load, both pre- and post-retrofit, was carefully scrutinized and compared with manufacturers' data for the technologies and lamp wattage specified. In all cases, manufacturers' data supported the pre- and post-retrofit connected load assumptions used to produce program design estimates. In addition, fixture connected loads were field tested using spot-watt metering devices to determine the accuracy of manufacturers' data for fixture connected loads. Spot metering results, which also support manufacturers' data for fixture connected loads, are provided on page B-26 of this appendix.

Engineering Detailed Computational Methods
Exhibit B-2
Fixture Assumptions Used to Generate
Retrofit Express Commercial Lighting Program Design Estimates

Generic Measure Group Descriptions	Code Application Year	Measure Code In the MDSS Database	1994 Per-Unit NC Impact§ (Watts)	Coincident Diversity Factor	Per-U nit Peak Demand MDSS Impact (Watts)	Per-Unit Annual Energy MDSS Impact $¥>$ (kWh)
Halogen						
< 45 watts	1994	L60	30.0	0.67	20.1	60
>50 watts	1994	L61	50.0	0.67	33.5	150 / 105
Compact Fluorescent Lamps						
Screw In CF						
5-13 watts	1994	L62	45.0	0.67	30.2	
$14-26$ watts	1994	L63	45.0	0.67	30.2	
Screw In CF- Reusable ballast						
5-13 watts	1994	L64	45.0	0.67	30.2	
$14-26$ watts	1994	L65	45.0	0.67	30.2	
Hard Wired CF						
5-13 watts	1994	L66	45.0	0.67	30.2	
$14-26$ watts	1994	L67	45.0	0.67	30.2	
27-50 watts	1994	L68	52.0	0.67	34.8	
Incandescent to Fluorescent Fixture						
With Energy Saving Ballast \& T12 Lamps	1993\&4	L7	212.0	0.67	142.0	
With Electronic Ballast \& T8 Lamps	1993\&4	L8	240.0	0.67	160.8	
Exit Signs						
Incand. to Compact Fluorescents	1993\&4	L5	29.0	1.00	29.0	254
Incand. to LED or Electroluminescent Retrofit	1993\&4	L6	33.0	1.00	33.0	289
Efficient Ballasts Changeouts						
Electronic Ballasts						
2 Lamp Electronic Ballast	1993\&4	L14	19.0	0.67	12.7	
3 Lamp Electronic Ballast	1993\&4	L15	29.0	0.67	19.4	
4 Lamp Electronic Ballast	1993\&4	L16	38.0	0.67	25.5	
T8 Lamps and Electronic Ballasts						
New Fixtures						
2'-1 U Tube or 2 lamps	1994	L69	21.0	0.67	14.1	
2'-2 U Tubes or 4 lamps	1994	L70	43.0	0.67	28.8	
2'-3 U Tubes or 6 lamps	1994	L71	78.0	0.67	52.3	
4'-1 lamp	1994	L72	22.0	0.67	14.7	
4'-2 lamps	1994	L73	22.0	0.67	14.7	
4'-3 lamps	1994	L74	37.0	0.67	24.8	
4'-4 lamps or 8'-2 lamps	1994	L75	45.0	0.67	30.2	
Fixture Modif.- Replace Lamps and Ballasts						
Replace Lamps \& Ballasts - 2' Fixture	1993\&4	L21	10.5	0.67	7.0	
Replace Lamps \& Ballasts - 3' Fixture	1993\&4	L22	13.0	0.67	8.7	
Replace Lamps \& Ballasts - 4' Fixture	1993\&4	L23	11.8	0.67	7.9	
Replace Lamps \& Ballasts -8' Fixture	1993\&4	L24	22.5	0.67	15.1	
Delamp Fluorescent Fixtures						
Fixture Modif.- Delamp and Reflector						
Removal - 2' Lamps \& Ballasts	1993\&4	L17	32.0	0.67	21.4	
Removal-3' Lamps	1993\&4	L18	43.0	0.67	28.8	
Removal - 4' Lamps	1993\&4	L19	46.0	0.67	30.8	
Removal - 8' Lamps	1993\&4	L20	96.0	0.67	64.3	
High Output T8 \& T10 Conversion w/ Delamp						
T10 \& Energy Saving Ballast	1994	L76	31.0	0.67	20.8	
T10 or T8 \& Electronic Ballast	1994	L77	45.0	0.67	30.2	
High Intensity Discharge						
Interior Compact HPS						
$0-35$ watts HPS	1994	L78	107.0	0.67	71.7	
36-70 watts HPS	1994	L79	112.0	0.67	75.0	
71-100 watts HPS	1994	L80	155.0	0.67	103.9	
Interior Standard MH from Merc. Vapor						
101-175 watts MH	1993\&4	L26	240.0	0.67	160.8	
176-250 watts MH	1993\&4	L27	528.0	0.67	353.8	
251-400 watts MH		L81	620.0	0.67	415.4	
Exterior HPS from Merc. Vapor						
$0-100$ watts	1993\&4	L28	113.0	0.00	0.0	463
101-175 watts	1993\&4	L29	240.0	0.00	0.0	984
176 watts \& greater	1993\&4	L30	610.0	0.00	0.0	2,501
Controls						
Time Clocks	1993\&4	L31	N/A	N/A	0.0	439
Occupancy Sensors			N/A	N/A		
72-350 watts controlled	1993	L32	N/A	N/A	62.0	277
351-1000 watts controlled	1993	L33	N/A	N/A	212.0	824
1000 watts and greater controlled	1993	L34	N/A	N/A	280.0	1409
Wall Mounted	1994	L82	N/A	N/A	62.0	277
Ceiling Mounted	1994	L83	N/A	N/A	212.0	824
Bypass/Delay	1993\&4	L35	N/A	N/A	106.0	412
Photocell	1993\&4	L36	N/A	N/A	0.0	99

§ Non-coincident demand impact -- the difference between the non-coincident existing (assumed) measure and retrofit measure demand. $¥$ Most program design (MDSS) energy impact estimates vary as a function of business type.

The Retrofit Express connected load figures were carried over into the evaluation analyses of program savings, though modified wherever possible for lamp burn-out rates in both the new and existing systems. Typical lamp burn-out rates were determined for specific technology groups, based upon data gathered during on-site

Engineering Detailed Computational Methods audit activities. Burned-out lamp rates and methodologies are presented in an upcoming section of this appendix.

The largest potential error in estimating noncoincident demand estimates is made in the assumptions regarding the existing lighting system prior to the adoption of retrofit measures. Technology group saturations for existing systems were gathered on-site that largely support the systems specified in these program assumptions. The results of these analyses are provided in an upcoming section of this appendix.

Also provided in Exhibit B-2 are the specific CDFs and nonsegment-specific annual energy savings estimates used in generating program design estimates. These terms are described in detail in the following two sections.

B.3.3 Coincident Demand Impact Calculations

Engineering estimates of noncoincident demand impact from equation (1) are multiplied by a CDF, which was developed based upon PG\&E load research data, as part of the Commercial End-Use Metering Project performed by Regional Economic Research (RER). CDF is mathematically defined as:

CDF $=$ Coincidence Factor x Diversity Factor
where:
Coincidence Factor is the ratio of the measure demand reduction at system peak and the noncoincident demand impact
and
Diversity Factor is the probability that a given measure is on at the time of system peak

The value of CDF for most lighting end-use program design estimates is 0.67 . Hence, coincident demand impacts are typically estimated as follows:

$$
\text { Coincident Demand Impact }=0.67 \times \mathrm{kW}_{\mathrm{NCP}}
$$

As shown in Exhibit B-2, the CDF does vary for certain measures, specifically exit lights and exterior lights. Evaluation results did not use this CDF value to estimate impacts, using instead detailed evaluation methods. Evaluation methods used customer-specific schedules in conjunction with business type and technology group operating factors to generate program impacts at the hourly level, as discussed on page B-12 of this appendix.

B.3.4 Annual Energy Impact Calculations

Per-unit program design energy impacts are typically calculated based upon the product of the per-unit non-coincident demand impact and industry group annual hours of fixture operation, as shown in the following equation:

$$
\begin{equation*}
\mathrm{kWh} h_{\mathrm{ANNAL}}=k W_{N C P} \times h r s \tag{2}
\end{equation*}
$$

Where:
$\mathrm{kWh}_{\text {AnNual }}=$ Per-unit annual energy impact by measure
$\mathrm{hrs}_{z} \quad=$ Annual hours that a given measure operates in industry group z

B.3.5 Annual Hours of Operation by Business Type

Annual hours of fixture operation are based upon results from a PG\&E study (HBRS and BCI 1992) and negotiations regarding impact estimates, according to a 1991 PG\&E Advice Filing with the CPUC. Hours of operation vary by business type, except in cases where all sectors share identical estimates for hours of operation, such as exit lighting or exterior lighting. Exhibit B-3 provides assumed hours of operation for various business types, as specified in the majority of the program design estimates. Refer to Exhibit B-2 for additional information regarding measures that are assumed to have the same energy impacts, independent of business type.

Exhibit B-3
Annual Fixture Operating Assumptions Used to Generate
Retrofit Express Commercial Lighting Program Design Estimates

Business Type	Annual Operating Hours*
Office	3,400
Retail	4,700
University	3,500
School	2,100
Grocery	7,000
Restaurant	4,800
Health Care/Hospital	4,000
Hotel/Motel	4,000
Warehouse	4,000
All Other	4,000

* All exterior lights are assumed to operate 4,100 hours per year regardless of business type.

Exterior lights are assumed to have the same annual hours of operation across all business types, even across sectors. They are assumed to be controlled by a combined time clock and photocell system, resulting in 4,100 operating hours per year. This

Engineering Detailed Computational Methods figure assumes that lights operate 12 hours a day, except during summer, when the photocell reduces operation by another three hours per day.

The evaluation results do not use the operating hours specified in the program design methodology, yielding instead to customer schedules derived using self-reported telephone survey responses, on-site schedule group responses, and lighting logger data to calibrate those responses. Again, unique customer lighting profiles were generated at the hourly level by daytype and season, in order to accurately estimate impacts according to PG\&E-specified TOU periods. This methodology ensured consistency between hourly impacts and energy impacts, where energy is derived by simply adding across specific hours.

B.3.6 Reproduction of Program Design Estimates

In an attempt to verify both the methods used to generate program design impacts and the impact estimates stored in the MDSS, RE program design impacts were reproduced. Although the methods were generally found to be applied correctly in the MDSS, in several instances, differences were found between the reproduced values and those stored in the MDSS. Further investigation showed that for specific cases, impact estimates in the MDSS were calculated incorrectly. Those particular instances are summarized below.

- L14-L16: Electronic ballast measure energy and demand impact estimates, that were applied for under the 1993 RE program application form, were inadvertently overestimated by two to four times, depending upon the measure installed. The unit of rebated measure under the 1993 program was lamps and not ballasts, causing this error in estimated impact.
- L21: Energy estimates for a subset of this 2' T8 lamp and ballast replacement measure were overestimated by approximately 40 percent. The cause of this error appears to be related to business type classification.
- L20: Energy estimates for a subset of this 8^{\prime} reflector and lamp removal measure were underestimated by approximately 60 percent. The cause of this error appears to be related to business type classification.
- L61: Energy estimates for a small subset of this halogen retrofit measure were overestimated by approximately 40 percent. The cause of this error appears to be related to program design assumptions that should have been implemented for schools.

In addition, other spurious MDSS impact estimates were infrequently detected. The source of these other events could not be specifically isolated.

B. 4 Evaluation Approach

To satisfy the requirements of PG\&E for impact estimates by TOU costing periods, all impact estimates were generated at an hourly level. Engineering estimates that were used as inputs to the SAE were additionally estimated according to each particular customer's self-reported operating schedule.

To estimate impacts for each hour, customer operating schedules were developed by daytype, hour and season, and expressed as numeric values between zero and one, where one indicates that the probability of being open is 100 percent, and zero represents a closed premise. Impacts utilize distinct operating factors by daytype for both the closed periods and the open periods (operating factors are also dependent upon business type and technology group, but that is not important to this discussion). To estimate impacts for each hour, fixture noncoincident demand connected loads are used along with the applicable schedule and operating factors, according to the following equation:

$$
U^{U} l_{i j z d h s}=\Delta U O L_{i} \times U_{i j} \times\left[\left(P O_{j d h s} \times O O F_{i z d}\right)+\left(\left(1-P O_{j d h s}\right) \times C O F_{i z d}\right)\right] \times\left[1+H V A C_{i j s}\right]
$$

Where:
UEIijzdhs is the unadjusted engineering impact for measure i , customer \mathfrak{j}, business type z, for daytype d, hour h and season s.

UOLi is the change in connected load for technology measure i.
Uij is the number of units of technology type i installed by customer j.
POjdhs is the schedule defined probability that customer j will be open on daytype d during the hour h and season s.

OOFizd is the open operating factor which describes the percentage of full load during normal business hours used by a group of fixtures of type i, in business type z, during daytype d.

COFizd is the closed operating factor which describes the percentage of full load during non-business hours used by a group of fixtures of type i, in business type z , during daytype d .

HVACijs is the contribution of impact caused by both heating and cooling interaction for technology measure i, installed by customer j, during the season s.

Impacts for each measure/season/daytype/hour (and often by customer) were derived and applied to a 1994 calendar, yielding demand profiles for all 8760 hours in a year.

B. 5 Detailed Engineering Derivations

B.5.1 Customer Operating Schedule Derivation

The calibration of customer lighting schedules was achieved using the following approach:

- Within the larger on-site sample, self-reported schedules (or profiles) were gathered at the schedule group level by daytype, allowing analysis of schedule group selfreport accuracy using the lighting logger sample. The detected bias in customer selfreported hours of operation at the schedule group level was then applied to the larger sample of schedule group self-reports by business type, thus calibrating all schedule group lighting schedules. The following key points describe the details of the calibration process for schedule groups:
- Self-reported schedule group profiles were generated that consist of hourly values generally consisting of one's and zero's, though "shoulder" hours (when a building transitions from on to off) may have intermediate values. These values represent the probability for any given hour of the day that lights are operating, according to the on-site contact. Schedule group hourly profiles were generated for each of three daytypes, Weekday, Saturday and Sunday.
- Loggers that were installed within schedule groups at a selected number of audits, are placed with the intention of gathering a measured equivalent of the schedule group operating schedule. Each logger stores a continuous date and time-stamped transition record of lights being turned on or turned off during the monitoring period. The data from each logger was then transformed into a useful format for analytical purposes, specifically, each 15-minute interval during the monitoring period was assigned a value between one and zero that specifies the percentage of time during each interval that a particular light operated. Then, for each logger, hourly mean values were generated by daytype using aggregating hourly results across the entire monitoring period. This yielded an hourly/daytype operating factor for the fixture monitored, or the percentage of time that each monitored fixture operated during the course of the monitoring effort, or the probability of operation.
- Lastly, logger and self-reported operating schedules were compared to each other at the business segment level to detect bias in the self report transitions from on to off. All loggers and schedule groups that contributed to a particular segment were independently combined using a weighted mean, where weights were applied based upon the total retrofit technology connected load within each particular schedule group. For logger data, the transition from on to off was set to be half the distance between the maximum hour-specific observation and the minimum hour-specific observation. All schedule group self-reports were then adjusted according to these results, by moving the periods of transition from on
to off, and the transitions from off to on, according to segment mean bias detected within the logger sample. In general the results of these analyses showed that customer self-reports were highly accurate. Therefore, in the absence of well behaved segment-specific results, unadjusted customer selfreports were used.
- Then, self-reported lighting schedules from the telephone sample were calibrated based upon more precise schedule group profiles gathered onsite. A weighting scheme was devised (based upon total new fixture connected load) within each schedule group to attain premise level schedules within the on-site sample. The detected bias in customer self-report hours of operation from the telephone response was then applied to the larger sample of telephone survey self-reports by business type, thus calibrating all telephone survey lighting schedules. The details of this load shape comparison and adjustment are very similar to the methods used in adjusting schedule group self-reports. For that reason, greater detail is not provided regarding the specifics steps implemented to adjust the telephone survey selfreports.
- Lastly, business type segment level adjusted fixture operating schedules were generated for use in MDSS impacts outside the survey and on-site audit samples. These segment mean business type schedules incorporate two distinct calibration steps, bias in on-site self-reported schedules, and bias in telephone survey selfreported schedules, calibration steps that are grounded on the best available information gathered in this research effort: lighting logger data. All schedules derived, whether customer-specific or business type segment-specific, were hourly/daytype/seasonal probabilities that a customer operates their lighting system, stored in this fashion to enable impact calculations at the hourly level.

B.5.2 Business Type and Technology Group Operating Factors

Operating factors, the percentage of lights operating during a specified time interval, were generated by business type and technology group, for facility operating and nonoperating periods by daytype. The operating factors that are applied to the probability that a given facility is operating comprise the open operating factor (OOF), and those that are applied to one minus the probability that a given facility is operating comprise the closed operating factor (COF). The data sources contributing to these estimates were taken primarily from two sources: new technology lamp counts performed at the time of each audit, and lighting logger data used in conjunction with the calibrated schedule group profiles. The steps that were implemented to derive operating factors are presented below.

- OOFs were primarily supported by lamp counts that were taken during each on-site audit. Lamp counts were conducted for each retrofit technology installed, and segmented into lamps that were on and lamps that were off, representing a technology-specific instantaneous OOFs. Since on-site audits were conducted on weekdays during normal facility business hours, lamp counts were used to estimate OOFs for weekdays. These customer results were then weighted across customers, yielding a single business type and technology group operating factor that was used consistently for all retrofit estimates falling into that particular segment. For business type and technology group segments with relatively low numbers of lamps counted, weighted mean values were generated across a number of business type segments to strengthen those mean values.
- COFs were estimated by daytype and business type using logger data, calibrated schedule group profiles, and weights by technology that are based upon retrofit fixture connected load. A simplified description of the procedure implemented is that all hourly logger observations categorized as non-operating, for a particular business and daytype segment, were used to generate a single mean value. This is roughly true, though a weighting scheme was implemented based upon the total schedule group retrofit technology connected load.
- It was also necessary to produce both Saturday and Sunday operating factors for the facility operating condition, with no supporting lamp count data. The loggers were used to generate OOFs by daytype, during the facility operating period. The ratio of resulting Saturday or Sunday operating factors to weekday provided a business type operating factor adjustment. These adjustments were then applied to the operating factors generated using lamp count data, yielding Saturday and Sunday OOFs. This analysis step also allowed for a comparison by business type of OOFs that were generated using lamp counts with those generated using logger data. These comparisons strongly support the operating factors generated for weekdays using lamp counts, which, in turn, support the operating factors generated using logger profiles.

B.5.3 HVAC Interactive Effects

B.5.3.1 Introduction to HVAC Interactive effects

In addition to the direct effects of lighting retrofits on premise energy and demand, the contribution of impact caused by cooling and heating system use is described in this section. Internal gains affect both the air-conditioning and heating loads in buildings, and thus HVAC equipment run-time and consumption. Lighting retrofits modify the heat gain in buildings, and thus heating system and air-conditioner usage. When highefficiency lighting systems replace standard-efficiency systems, cooling loads are decreased while heating loads increase. This section presents the method used to quantify those impacts.

The engineering data sources used to evaluate the 1994 commercial lighting program are identified in Exhibit B-4. Shaded regions identify the primary data sources contributing to HVAC interactive estimates.

Engineering Detailed Computational Methods
Exhibit B-4
Data Sources Contributing to Heating and Cooling Interactive Estimates

Data Sources	Billing D ata		MDSS Database	Telephone Survey		On-Site Audit		P/NP Metering	
Research 0 bjectives	U sage Metered	Demand Metered		Lighting Participant	Program NonParticipant	Lighting Participant	Program NonParticipant	Spot Watt	TOU Metering
IM PACT ANALYSIS									
U nit O perating Load/Impact									
Old Wattage			4			4	4	4	
New Wattage			4			4		4	
Impact (UOI)			4			4		4	
Hours of Operation									
Operating Factor (OF)				4	4	4	4		4
Operating Hours (OH)				4	4	4	4		4
Measure Installation									
Unit Installed (U)			4			4			
Retention						4			
Burned-Out Lamps						4	4		
Impact Adjustment									
SAE Demand Realization Rate									
SAE Energy Realization Rate									
H-Factor by Cost Periods									
Net-to-Gross Ratio									
Interactions									
Cooling Savings				4	4	4			
Heating Penalty				4	4	4			

Survey responses and calibration data gathered on-site were the most important data sources contributing to the HVAC interactive analyses of energy and demand.

The interactive effects of HVAC appliances were estimated using methods developed by ASHRAE, and published in the ASHRAE Journal. ${ }^{3}$ This article explores the use of HVAC energy as a function of energy-efficient lighting design, and potential savings and penalties resulting from efficient technology retrofits.

This section includes a thorough overview of the steps required to implement interactive adjustments to lighting technology-level impacts. Flowcharts are used to depict key decisions that must be made for each contributing customer, and equations are supplied that were used to estimate the interactive benefits (savings) and costs (penalties) for each lighting participant.

[^22]
B.5.3.2 Cooling Energy Equations

The algorithm that was used to estimate cooling energy interactive savings is presented in Exhibit B-5. To estimate the annual cooling energy contribution from the HVAC system, two new terms are introduced in addition to those already required to estimate the lighting technology-only contribution.

Exhibit B-5
Gross Annual Cooling Energy Impact Algorithm

$$
\text { COOLSAV }_{\mathrm{j}}=\left\lceil\operatorname{HGANNUAL}_{j} \times \frac{1}{M C O P_{j}}\right\rfloor \times\left[\sum_{t=1}^{T_{j}} \Delta k W h_{t j z}\right\rfloor
$$

where:

COOLSAV $_{j}=$ Annual HVAC savings resulting from lighting reduction for premise j

HGANNUALj = Annual fraction of internal heat gain removed mechanically
for premise j
$\mathrm{MCOP}_{j}=$ Marginal coefficient of performance of cooling equipment for premise j
$\Delta k W h_{t i z}=$ Technology t annual energy savings for premise j, a member of industry group z
$\mathrm{Tj} \quad=$ The number of lighting technologies installed in premise j

The first term, HGANNUALj, describes the fraction of heat gain removed mechanically from the building, as defined in the ASHRAE method Table 1 (from the ASHRAE article, appended to this report). The fraction of heat gain removed mechanically is a function of building size, and whether or not the building is served by an economizer (a device that uses outside air rather than mechanically chilled air to cool buildings when the outside temperature is sufficiently low). The reduced heat gain caused by an energy-efficient lighting retrofit can only benefit cooling system energy use when lighting waste heat is mechanically cooled. Additionally, the fraction of heat gain that is mechanically cooled is always less than one, because of outdoor air ventilation
(including the use of economizers), exhaust fans (that mechanically remove heat), and building envelope infiltration.

Table 1 inputs are weather normalized for various locations throughout the United States, including three cities within PG\&E's service territory. Either Santa Barbara, San Francisco, or Sacramento was used as a proxy for each participant site.

The second term, MCOPj, defines the marginal cooling system efficiency, a variable describing the efficiency (including all auxiliaries, and supply and return fans) applicable to the incremental cooling load. A default system efficiency is supplied by the ASHRAE method for estimates that involve the retrofit of lighting systems. The MCOP term serves as a conversion constant in the HVAC energy equation, producing an estimate of electricity consumption needed to mechanically cool lighting waste heat.

Next the methods used to determine the cooling interactive terms used in the ASHRAE method are described in greater detail.

B.5.3.3 Application of the ASHRAE Cooling Energy Method

Exhibit B-6 introduces the decision-making processes leading to the calculation of annual cooling energy impacts. This exhibit illustrates several key points.

- First, cooling impacts were estimated only for premises with cooling systems.
- Second, engineering impacts were estimated only for sites served by electricpowered cooling systems, since engineering impacts served as inputs to SAE analyses, which were supported by electric billing data. Engineering impacts were estimated in two ways.
- For premises served by HVAC systems that included an economizer mode, ASHRAE article Table 1 HGANNUALj values were selected.
- For premises without economizers, values for HGANNUALj were calculated based upon the building size per floor.

Exhibit B-6
Determining the Cooling Interactive Contribution to Energy Impacts

Engineering Detailed Computational Methods
Buildings are classified into three size categories: large, medium, and small, with relatively large to small values of HGANNUALj, respectively. Premises served by economizers have the smallest relative values of HGANNUALj, thus implying that less lighting system heat is mechanically cooled on an annual basis when economizers are present.

ASHRAE HVAC impacts are achieved by multiplying the heat gain fraction removed mechanically (HGANNUALj) and the marginal coefficient of performance (MCOPj) with annual fixture-level energy impacts for indoor lighting systems, on a per-premise basis. The resulting cooling energy savings are used as inputs to the SAE analyses, along with both technology-level impacts and heating penalty estimates (as described below).

B.5.3.4 Heating Energy Equations

To estimate the annual heating energy penalty from HVAC system electric heating, three new terms are introduced in addition to those already required to estimate the lighting technology-only impacts. The algorithm presented in Exhibit B-7 was used to estimate heating energy interactive penalties, and includes the following distinctive terms:

- HVAC interactive heating estimates include a term that describes the fraction of internal heat gain contributing to the building heating loads (HLANNUALj), as defined in the ASHRAE publication, Table 1. The following points must be considered :
- Because of the typical reduction in internal gains associated with lighting efficiency upgrades, more heat is needed from the HVAC system to meet building losses.
- This input is weather normalized for various locations throughout the United States, including three cities located within PG\&E's service territory. A particular city is used as a proxy for each participant site.
- The contribution to the heating system is also influenced by the dimensions of each building. The fraction of each retrofit on the exterior 15 -foot perimeter, PERIMETERj, is used to define the fraction of fixture heat contributing to the annual heating load. The internal "core" zones are always assumed to require cooling, never heating.
- HVAC interactive estimates also include a term that describes the heating system efficiency (HPCOPj), which depends upon system type for estimates of electric energy penalties, specifically, whether heat pump or resistance heat. Resistance heaters are assumed to have an HPCOP of 1.0 , whereas an HPCOP of 1.5 is recommended for heat pump systems.

Exhibit B-7

Gross Annual Heating Energy Impact Algorithm

$$
\text { HEATPEN }_{\mathrm{j}}=\left[H L A N N U A L_{j} \times \text { PERIMETE } \beta x^{H P C O P_{j}}\right]^{\dagger}\left[\sum_{t=1}^{T_{j}} \Delta k W h_{t j z}\right\rfloor
$$

where:

$\operatorname{HEATPEN}_{j}=$	Annual HVAC penalty resulting from lighting retrofit for premise ${ }^{j}$
HLANNUAL	$=$ Annual fraction of internal heat gain contributing to building heating load for premise j
PERIMETER $_{i}$	$=$ Fraction of lighting retrofit on the perimeter area for premise j
$\mathrm{HPCOP}_{\mathrm{j}}=$	Heat pump coefficient of performance of heating equipment for premise j
$\Delta k W h_{t j z}$	Technology t annual energy savings for premise j, a member of industry group z
$\mathrm{T}_{\mathrm{j}} \quad=$	The number of lighting technologies installed in premise j

Next the logic used to determine heating interactive estimates (according to the ASHRAE method) are described in greater detail.

B.5.3.5 Application of the ASHRAE Heating Energy Method

As described earlier, the efficient lighting technologies installed under the lighting program caused a reduction in internal heat gains in buildings, and a related increase in the energy required to heat internal spaces. The flow chart shown in Exhibit B-8 establishes the general decisions used to estimate heating impacts using the ASHRAE method. To apply the ASHRAE method requires determining the heating system fuel and, if electric, whether or not the system is a heat pump.

Engineering Detailed Computational Methods
Exhibit B-8
Determining the Heating Interactive Contribution to Energy Impacts

Presented next are the methods used to determine the distribution of annual cooling impacts and heating penalties among each hour of the year.

B.5.3.6 Hourly HVAC Impacts

PG\&E requires that impacts be generated according to costing periods related to TOU customer rates. Since the ASHRAE impacts predict a reduction in cooling energy use and increased heating energy use on an annual basis, a methodology had to be developed to distribute the annual impacts determined using the ASHRAE method to each customer on an hourly basis. This section describes the method that was developed.

The distribution of impacts to each hour of the day was accomplished while maintaining several key constraints.

- HVAC impacts were applied during selected days in proportion to hourly lighting system impacts.
- Cooling impacts were applied to selected days as a function of summed daily temperature.
- Heating impacts were applied to selected days as a function of summed daily temperature.
- HVAC impacts for any given hour were applied based upon mechanical system efficiency parameters supported by the ASHRAE method.

Details regarding the methodology are described below, with special consideration of the constraints described above.

In applying both cooling and heating impacts, certain parameters introduced in exhibits B-5 and B-7 specify the fraction of annual fixture heat gain that must be either mechanically cooled or mechanically heated. For cooling impacts, the term HGANNUALj describes the customer-specific fraction of fixture heat gain that requires cooling, and for heating impacts, HLANNUALj x PERIMETERj describes the customerspecific fraction of the fixture heat gain that contributes to annual heating loads. The method of distributing HVAC impacts over each hour of the year relies upon these terms to identify the fraction of days in each year to which HVAC impacts were applied. To select specific days (to which HVAC impacts are applied), all days in a year were ranked according to summed daily temperatures, for each of three applicable weather tapes, WYEC Santa Barbara, San Francisco, and Sacramento. Dry bulb temperatures were used for this procedure.

For cooling impacts, the selected days to which impacts were applied on an hourly basis are those days with the highest summed daily temperatures. The number of days

Engineering Detailed Computational Methods
applied per customer is always HGANNUALj x 365 . Hourly impacts for applicable indoor measures were generated using the following formula:

$$
\mathrm{HVAC}_{\mathrm{ijzdhs}}=\frac{U E l_{i z d h s}}{M C O P_{j}}
$$

Likewise, for heating impacts, the selected days to which impacts were applied on an hourly basis are those days with the lowest summed daily temperatures. The number of days applied per customer is always HLANNUALj x PERIMETERj x 365. Hourly impacts for applicable indoor measures were generated using the following formula:

$$
\mathrm{HVAG}_{\mathrm{izdh}}=\frac{U E l_{\text {zadhs }}}{H P C O P}
$$

B.5.3.7 HVAC Demand

The distribution of hourly estimates of HVAC impact during the summer on-peak period and system peak hour, vary day-to-day with changes in fixture operating schedule and outdoor temperature. To arrive at a single program figure for any particular business type and lighting technology segment, mean values were calculated for the peak hour across the entire summer on-peak period, thus providing a diversified estimate of HVAC impact.

This concludes the derivation of HVAC interactive engineering parameters.

B. 6 Evaluation Results

B.6.1 Overview

This section provides the reader with detailed engineering results for parameters that contributed to unadjusted gross evaluation impact estimates. PG\&E should consider adopting many of the results presented to improve the accuracy of program design estimates.

B.6.2 Measured Fixture Connected Loads

Noncoincident change in fixture connected load for each measure installed was determined based upon manufacturers' product literature for both the retrofit technologies, and for assumed existing technologies. To test the accuracy of manufacturers' literature, instantaneous fixture connected loads were measured during on-site activities. Equipped with a spot-watt metering device called a watt probe, both new and existing fixture connected loads were measured. Measurements were taken by locating a switch with just a single type of fixture served on that particular circuit. An attempt was always made to take measurements on circuits with as many new fixtures as possible, thus ensuring high precision for circuits drawing more than 200 watts.

B-24

Engineering Detailed Computational Methods Individual measurements were grouped based upon several selected technology groups. Technologies were grouped to attain a single result that represents a diverse group of fixture configurations (i.e., the T8 technology group contained measurements for $2^{\prime}, 4^{\prime}$, and 8^{\prime} fixtures, in 1-, 2-, 3 -, and 4-lamp configurations). Furthermore, the measurements were all normalized for these groupings per total lamp wattage in each fixture. This allowed the calculation of confidence bounds surrounding measurements from a diverse group of fixture configurations that all fall into a particular technology group.

Measured fixture connected load results, normalized to total lamp watts served, are provided in Exhibit B-9. At the top of the exhibit, mean normalized measurements are presented by technology group, along with the lower and upper confidence bounds, calculated at the 95 percent confidence interval.

Exhibit B-9
Technology Group Spot-Watt Results

	Normalized Spot Watt Measurement Results					
	Number of Spot W att Measurements per Technology Group	Mean Ratio of Measured Watts to Lamp Watts	Standard Deviation	95% Confidence Interval	Lower Bound	Upper Bound
T-12 Fixtures Group	27	1.04	0.08	0.03	1.01	1.07
T-8 Fixtures	85	0.94	0.15	0.03	0.91	0.97
CF Fixtures	13	1.11	0.20	0.12	0.99	1.23
Metal Halide Fixtures	7	1.19	0.18	0.17	1.02	1.36
HPS Fixtures	7	0.92	0.31	0.39	0.53	1.31
Mercury Vapor Fixtures		5	1.19	0.03	0.29	0.90

Technology Group	Program Design FixtureDescription	Tested Program Design Fixture Connected Loads			
		W atts per fixture	Total Lamp W atts	$\begin{gathered} \text { Ratio } \\ \text { MDSS/Lamp } \\ \text { W atts } \end{gathered}$	W ithin the 95\% C.I. for the Specific Technology G roup?
T-12 Fixtures	2L 4' T-12 w/ ES MB	80	80	1.00	Yes
T-12 Fixtures	3L 4' T-12 w/ 2 ES MB	121	120	1.01	Yes
T-12 Fixtures	2L 8' T-12 w/ 2 ES MB	151	150	1.01	Yes
T-8 Fixtures	2L 4' T-8 w/EB	58	64	0.91	Yes
T-8 Fixtures	3L 4' T-8 w/EB	84	96	0.88	No
T-8 Fixtures	2L 8' T-8 w/EB	106	118	0.90	Yes
CF Fixtures	13 Watt Compact FI.	15	13	1.15	Yes
CF Fixtures	223 Watt Compact FI.	30	26	1.15	Yes
CF Fixtures	44 Watt Compact FI.	48	44	1.09	Yes
Metal Halide Fixtures	175 Watt Metal Halide	210	175	1.20	Yes
Metal Halide Fixtures	250 Watt Metal Halide	292	250	1.17	Yes
Metal Halide Fixtures	400 Watt Metal Halide	455	400	1.14	Yes
HPS Fixtures	35 Watt Int HPS	43	35	1.23	Yes
HPS Fixtures	70 Watt Int HPS	88	70	1.26	Yes
HPS Fixtures	100 Watt Int HPS	130	100	1.30	Yes
HPS Fixtures	100 Watt Ext HPS	130	100	1.30	Yes
HPS Fixtures	400 Watt Ext HPS	465	400	1.16	Yes
Mercury Vapor Fixtures	250 Watt Mercury Vapor	285	250	1.14	Yes
Mercury Vapor Fixtures	400 Watt Mercury Vapor	450	400	1.13	Yes
Mercury Vapor Fixtures	750 Watt Mercury Vapor	820	750	1.09	Yes
Mercury Vapor Fixtures	1000 Watt Mercury Vapor	1075	1000	1.08	Yes

Engineering Detailed Computational Methods

To test the accuracy of fixture connected load levels that were assumed for both the calculation of evaluation results and program design estimates, selected fixture connected loads from each technology group were tested to determine whether or not the normalized connected loads for those fixtures fall within the measured 95 percent confidence interval. These tests were carried out based upon the technology group to which each measure belongs, as summarized in the bottom portion of Exhibit B-9.
These results show that in all but one of the selected cases, the fixture connected loads used to derive impacts fell within the 95 percent confidence interval for a particular technology group. This result suggests that fixture connected loads based upon manufacturers' product literature are accurate and should continue to be used.

B.6.3 Burned Out Lamp Rates

When retrofit lighting programs are implemented, burned-out lamps are often replaced. For those particular lamps, the first year impacts yield an increase in energy use, though the program saves energy across all observations. In addition, new fixtures often fail a short time after installation, resulting in a decrease in energy use for those particular fixtures. In an effort to quantify these impacts, burned-out lamps were counted during the on-site audits (in addition to the total number of lamps observed). All such counts were categorized as either retrofit technologies or existing technologies, to allow separate analysis of the pre- and post-retrofit burned-out lamp rates.

Total lamp counts yielded significant burned-out lamp results in four fixture categories, as provided in Exhibit B-10 below:

Exhibit B-10

Observed Burned Out Lamp Rates

Pre- or Post-Retrofit	Technology G roup	O bserved Burned O ut Lamp Rate
Pre-Retrofit	Incandescent	2.16%
Pre-Retrofit	Standard Fluorescent	3.05%
Post-Retrofit	Compact Fluorescent	0.37%
Post-Retrofit	Standard Fluorescent	0.26%

These burned-out lamp observations were applied to the pre- and post-retrofit connected load assumptions based upon the following rules:

- Burned-out lamp rates were only applied within the RE program because of the diversity of measures that were applied within the Customized program.
- Burned-out lamp rates were only applied to measures where both the pre- and postretrofit technologies had supporting burned-out lamp data, never just pre- or just post-retrofit fixture loads.

The following equation was used to incorporate burn-out rates within the estimated change in connected load pre- to post-retrofit:

$$
k W_{N C P}=\left[\left(1-B O_{E}\right) \times k W_{E}\right]-\left[\left(1-B O_{R}\right) \times k W_{R}\right]
$$

Where:
$\mathrm{BO}=$ Estimated burn-out rate for the existing measure system
$\mathrm{BO}_{\mathrm{R}}=$ Estimated burn-out rate for the retrofit measure system

B.6.4 Existing Fixture Saturation by Technology Group

All RE evaluation impacts utilize program design assumptions regarding the fixtures removed at the time of retrofit. These assumptions were tested using observed existing technology saturations recorded during implementation of the on-site audits.

Exhibit B-11 provides the results of existing fixture saturation comparisons, according to both participation in the RE program and on-site results. Estimates of the total number of lamps replaced were derived using participation data and assumed fixture configurations for replaced systems, yielding total lamps by technology group. Estimates from the on-site audits were derived by mapping each existing system observation to a particular technology group, and then subsequently summing the total number of lamp observations recorded during on-site activities within each technology group.

The existing system fixture saturation recorded on site agrees in general with the assumed program design saturation, though the fixture types are more diverse in the actual population. The change in connected load pre- to post-retrofit is a very important parameter used to estimate program savings, and yet little is actually known about the type or frequency with which particular systems are replaced. This is a weakness in the MDSS we recommend correcting.

Engineering Detailed Computational Methods
Exhibit B-11
Observed Existing Fixture Saturation vs. Program Design Replacement Assumptions

B.6.5 Hours of Fixture Operation by Business Type and Technology Group

Exhibit B-12 presents a summary of the annual hours of fixture operation applied in generating RE energy impacts in the commercial sector.

Exhibit B-12
Commercial Sector Annual Fixture Hours of Operation by Business Type and Technology Group

	Commercial Sector H ours of Fixture 0 peration									
	$$	"	$\begin{aligned} & \frac{2}{2} \\ & 5 \\ & \frac{0}{8} \\ & \frac{8}{6} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \overline{8} \\ & \frac{8}{W} \end{aligned}$	2	H		8 8 8 8 8	8 8 6 0 0 3	岗
Indoor Lighting										
Retrofit Express Program										
Compact Fluorescent	3,600	3,100	3,200	1,800	5,100	4,300	4,000	4,900	2,300	3,900
Standard Fluorescent	3,900	4,300	3,800	2,000	6,900	5,200	4,900	6,500	3,000	4,800
High Intensity Discharge	4,200	4,000	3,900	2,400	6,500	5,600	5,100	6,800	3,200	5,100
Halogen	4,200	3,900	3,900	2,300	6,500	5,500	5,100	6,900	3,100	5,000
Exit Signs	8,200	8,200	8,200	8,200	8,200	8,200	8,200	8,200	8,200	8,200
Controls (Occ. Sens. Only) \dagger	900	1,000	800	600	700	1,300	1,400	1,900	900	1,100
Exterior Lighting										
Retrofit Express Exterior HID	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600

\dagger Hours presented for occupancy sensors reflect the net reduction in hours of operation.
Although the hours presented are at the detailed level of business type and technology group, providing details from the engineering methods applied, we cannot recommend at this time that results at this detailed level be applied to other samples of participants.

The annual fixture operating figures presented here are based upon the combined application of customer operating schedules by daytype and season, and open and closed operating factors developed by daytype, business type, and technology group. To prevent unnecessary reporting and tables, presentation of the operating factors and operating schedules has been replaced with information at levels of detail more suitable for PG\&E's use, i.e., the annual fixture operating hours summaries just presented, and the summer on-peak coincident diversified operating factors that follow.

B.6.6 Coincident Diversified Operating Factors by Business Type and Technology Group

Exhibit B-13 presents a summary of the commercial sector peak-hour coincident diversified operating factors (CDOF's), the percentage of connected load use estimated for the peak hour on a mean basis across the summer on-peak period. This term incorporates diversity as a function of both customer operating schedules, and weekday open and closed operating factors that were developed by business type and technology group. These terms are presented for the purpose of providing PG\&E with detailed customer retrofit performance during the critical on-peak hour.

Engineering Detailed Computational Methods
Exhibit B-13
Commercial Sector Summer On-Peak CDOF's

	Commercial Sector Summer On-Peak CDOF Results									
	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \overline{\frac{6}{8}} \\ \stackrel{y}{x} \end{gathered}$		$\overline{8}$ $\frac{8}{4}$ 	¢ d 0	皆			8 0 0 0 3 3	$\dot{\underline{\Sigma}}$
Indoor Lighting										
Retrofit Express Program										
Compact Fluorescent	0.70	0.59	0.48	0.40	0.61	0.59	0.60	0.58	0.57	0.54
Standard Fluorescent	0.78	0.94	0.62	0.46	0.92	0.79	0.80	0.78	0.76	0.71
High Intensity Discharge	0.84	0.85	0.66	0.58	0.85	0.85	0.85	0.81	0.81	0.76
Halogen	0.85	0.84	0.66	0.57	0.86	0.84	0.85	0.83	0.80	0.75
Exit Signs	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Exterior Lighting										
Retrofit Express Exterior HID	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15

We cannot recommend at this time that CDOF results, which were derived at the technology group and business type level, be transferred to other retrofit customers based upon this study alone.

B.6.7 HVAC Impact Results

Exhibit B-14 presents commercial sector mean HVAC energy and summer on-peak demand adjustment factors by business type that describe the ratio of total fixture and HVAC impact to fixture-only impact. These adjustments could be applied by business type to future estimates of technology-only lighting impacts, yielding estimates of total impacts that include the HVAC component.

Exhibit B-14
Commercial Sector HVAC Adjustments

Industry Group	Indoor Lighting HVAC Adjustments	
	Energy Adjustment	Demand Adjustment
Office	1.14	1.24
Retail	1.08	1.16
College/University	1.19	1.32
School	1.12	1.22
Grocery	1.12	1.23
Restaurant	1.13	1.26
Health Care/Hospital	1.12	1.22
Hotel/Motel	1.16	1.27
Warehouse	1.05	1.10
Miscellaneous	1.10	1.16

B.6.7 Customized Incentives Methodology

Hard copy application forms for Customized program participants were obtained from PG\&E, providing a critical source of information used to derive program impacts. Key engineering data from the forms were entered into a database to classify each impact by technology group, and to generate critical information regarding the retrofit system installed and the existing system removed. Classifying impacts was an important part of this analysis, since impacts tracked in the MDSS for Customized program measures are often not categorized. The method used to generate impacts (for most of the technology groups) required an estimate of the change in connected load for each measure retrofit. With these two parameters and any customer-specific schedule information, impacts were estimated using methods that are consistent with those used for the measures in the RE program. In the absence of hard copy form data, it was found that the MDSS demand impact could be used to approximate change in fixture connected load. In all cases investigated (with the exception of exterior HID lights, refrigerator case door anti-sweat devices, and EMS systems), change in connected load was tracked in the MDSS variable PKW1.

However, some of the items retrofit did not fit into a category associated with the RE measures, as described in the following cases:

- Traffic signal retrofits using red LED arrays were assumed to have a 50 percent probability of operation during every hour of the year, which is a conservative estimate. The MDSS estimates for summer on-peak were undiversified change in connected load, as was typical for most Customized measures.
- EMS system energy estimates, taken either from the application forms or the MDSS, were used, and simply applied evenly to every hour of the year.
- Supermarket refrigerator case doors were equipped with sensors (controlled by a new EMS system) to limit the run-time of anti-sweat heat strip devices. These impacts were tracked in the MDSS under the lighting program, even though these impacts are really the result of refrigeration measures. Consideration should be given in the future to tracking these impacts under another end-use category.

B. 7 Indoor Impact Profiles by Business Type and Costing Period

To conclude this engineering appendix, hourly/daytype unadjusted gross energy profiles are presented for selected business types. by costing period, for all indoor lighting technologies installed under the RE program. The following profiles demonstrate the detailed information supplied to PG\&E through the application of engineering estimates on an hourly basis.

Exhibit B-24
Indoor Lighting Impact Profiles for the Retail Segment During the Winter Season Impect (MWh)

Appendix C

DETAILED STATISTICAL IMPACT ANALYSIS APPROACH AND RESULTS

Appendix C

BILLING REGRESSION ANALYSIS

This appendix documents the detailed analytical steps undertaken in the billing regression analysis of Pacific Gas and Electric Company's (PG\&E's) 1994 Commercial Lighting Technologies Evaluation It begins with a discussion of analysis periods and data sources used in the billing regression analysis and then presents the regression model specification and SAE realization rate. The presentation of relative precision calculation procedures and results concludes the appendix.

C. 1 Overview

The billing regression analysis of the Commercial Lighting Technologies Evaluations an integrated part of the overall net and gross impact evaluation. The key objective of the analysis is to determine the first-year program energy impacts. A statistical analysis is employed to model the differences of customers' energy usage between pre- and postinstallation periods. The model is specified using actual customer billing data and independent variables that explain changes in customers' energy usage including engineering estimates of program participation. This statistically adjusted engineering (SAE) analysis is consistent with the requirements of the Load Impact Regression Model (LIRM) defined in the California Public Utilities Commission's (CPUC's) Measurement and Evaluation Protocols (the Protocols).

The results of the billing regression analysis are estimated as ratios, termed "realization rates," of realized impacts to engineering impact estimates. Realized impacts represent the fractions of the engineering estimates actually "observed" or "detected" in the statistical analysis of actual billing data. The realization rates estimated as coefficients in the SAE regression models are relative to the results of the evaluation-based engineering estimates, not the PG\&E Program ex ante estimates. The SAE realization rates, the estimation of which is the topic of this appendix, are then used to estimate program impacts and realization rates relative to the ex ante estimates.

C. 2 Data Sources for Billing Regression Analysis

The billing regression analysis for the 1994 Commercial Lighting Programs Evaluation uses data from four primary data sources: the PG\&E Management Decision Support System (MDSS) tracking database, the billing database, the telephone survey data, and the engineering estimates of changes of usage between the pre- and post-installation
periods. It also utilizes weather data tapes from PG\&E's load research weather sites. A summary of the data elements used in the regression analysis are presented below.

C.2.1 Program Participant Tracking System.

The participant tracking system for the Retrofit Express (RE) and Customized Incentives (Customized) programs was maintained as part of the MDSS. It contains program applications, rebate and technical information about installed measures, including measure description, quantity, rebate amount, and ex ante demand, and energy and therm saving estimates. The MDSS database is linked to the billing database and other program databases through PG\&E's customers control numbers.

C.2.2 PG\&E Billing Data.

For this evaluation, the PG\&E billing data were obtained from two different data sources within PG\&E. The original nonresidential billing dataset contains monthly energy usage for all nonresidential accounts in PG\&E's service territory, and was used in the sample design as described in Appendix A. The second billing dataset, which consists only of customer accounts in the surveyed dataset, was later obtained from PG\&E Load Data Services. ${ }^{1}$ Since the second billing dataset has many useful fields that were not included in the first dataset, a decision was made to use the second billing dataset to conduct the statistical billing analysis. The billing series used in the analysis is the PG\&E pro-rated monthly usage data, a series calculated by PG\&E for each calendar month, from January 1991 to September 1995.

C.2.3 Weather Data

The hourly dry bulb temperature collected for 25 PG\&E load research weather sites was used in the billing regression analysis to calculate total monthly cooling and heating degree days for each month in the analysis period. For each customer in the analysis dataset, the appropriate weather site was linked to that customer by using the PG\&Edefined weather site to PG\&E local office mapping.

C.2.4 Telephone Survey Data

Two telephone survey samples of 479 participant and 458 nonparticipant commercial customers were collected for the evaluation. The data collected in the telephone survey supplies information on energy-related changes at each site for the billing period covered by the billing regression analysis. For a detailed discussion of the telephone survey sample design and the final sample distribution, see Appendix C.

[^23]
C.2.5 Final Analysis Sample

As discussed earlier, this evaluation utilizes a nested sample design approach. The onsite audit sample and lighting logger sample were collected as part of the telephone survey, with the exception of a few customers who completed an on-site audit and later declined to be telephone surveyed. The final analysis sample size of 480 commercial participant customers represents 325 customers who were surveyed only by telephone, 154 customers who were surveyed by telephone and on-site audited, and one customer who was on-site audited, but later refused to complete a telephone survey. This sample includes a total of 432 RE program indoor lighting participants, 20 Customized program indoor lighting participants, and 28 participants who installed only outdoor lighting measures under either the RE or Customized program. It is important to mention that various program or technology participant populations are not mutually exclusive. For example, a customer can participate both RE and Customized programs and receive rebates for both indoor and outdoor lighting measures in the same year. The following decision rules were used to define each participant population: 1) customers who received rebates for both indoor and outdoor lighting measures are classified as indoor lighting participants; and 2) customers who participated both RE and Customized programs are classified as Customized participants if there is at least one Customized lighting measure installed. The final analysis sample distribution, by business type, program, and indoor/outdoor measures, is presented in Exhibit C-1.

Exhibit C-1
Analysis Sample Distribution
By Program, End Use and Business Type

Business Type	Participants			Comparison Group	Total
	Indoor		Outdoor		
	RE	Customized	RE/Customized		
Office	106	2	6	138	252
Retail	105	3	14	104	226
Coll/Univ	1	0	0	3	4
School	61	1	3	33	98
Grocery	27	11	0	30	68
Restaurant	20	0	2	29	51
Health Care	33	0	1	20	54
Hotel/Motel	14	1	0	36	51
Warehouse	32	1	1	32	66
Commercial Misc.	33	1	1	33	68
TOTAL	432	20	28	458	938

In order to estimate independent realization rates at the business type and technology level, the lighting technologies were further grouped into seven categories, as shown in

Exhibit C-2. Among those technology categories, the Standard-Efficiency Fluorescent group accounts for the largest share of impact, with approximately 65 percent of the total engineering impact estimate for energy. The second largest technology group is the Interior HID and Halogen, which accounts for about 11 percent of the impacts, followed by the Customized measures (7 percent) and the Compact Fluorescent Lamps (7 percent). The outdoor lighting measures account for approximately 5.6 percent of the total impacts.

Exhibit C-2
Analysis Sample Distribution by Technology

Lighting Technology	Description of Technology	Sample Size *
RE Program: Interior HID and Halogen	All Halogen Wattages, All Indoor HID Measures	65
RE Program: Compact Fluorescent Lamps	All Compact Fluorescent Measures	175
RE Program: Exit Signs	All Exit Sign Retrofit Measures	59
RE Program: Standard- Efficiency Fluorescent	Incandescent to Fluorescent Fixtures, Efficient Ballast Changeouts, T-8 Lamps and Electronic Ballasts, Delamp Fluorescent Fixtures, Reduced Wattage Lighting	351
RE Program: All Other Indoor Lighting Measures	All Controls, All Other Misc. Indoor Lighting Measures	57
Customized Program: All Indoor Measures	All Customized Incentives Lighting Measures	20
Outdoor Lighting: All Outdoor RE and Customized Measures	Exterior HPS from Mercury Vapor, Outdoor Incandescent to Fluorescent, Exterior HPS/LPS	94
*Sum may exceed the total sample size due to mutliple meassure installations.		

C. 3 Data Integration and Analysis Dataset Profiles

All data elements mentioned above were linked to the final analysis database through PG\&E's unique customer control number. For this evaluation, the analysis database served as a centralized tracking system for customers' billing history, program participation, and sampling status and helped reduce data problems, such as account mismatch and double counting. All participants in the survey sample were successfully merged with the MDSS database by control.

In this section, the sample distribution and key variables in the analysis dataset were examined, and the appropriate statistics were computed to ensure that the data was sufficient, both in terms of quality and quantity, to support the billing regression analysis. The findings are grouped into the following categories, based upon the nature of the variables and their respective data sources. All the statistics presented below are based upon the integrated analysis dataset of 938 observations.

C.3.1 Unadjusted Engineering Estimates

As mentioned above, there are a total of 480 participants in the final analysis database. Unadjusted engineering estimates of energy changes were calculated for all 480 customers. The difference between change and gross impact is that the change estimate accounts for the change in consumption relative to the participants' pre-existing system, and takes into account burned-out bulbs. When burned-out bulbs have been replaced by the participant, either as part of, or simultaneously with, program participation, the billing analysis detects an increase in energy usage, offsetting the gross impact of the program. For this reason, the engineering estimates account for participant and nonparticipant burn- out rates, and account for burned-out bulb replacement in the change estimates. For the impact estimates, however, we will assume that the burnedout equipment would have been replaced, and credit the program with first-year savings associated with all equipment installed under the program.

Exhibits C-3 and C-4 below present the engineering change estimates used in the billing analysis by technology category and business type.

Exhibit C-3

Engineering Change Estimates by Technology Categories

Technology Group	Customers Installing Measures	Mean Impact $\mathbf{(k W h)}$	Total Impact $\mathbf{(k W h)}$
Halogen and Interior HID	65	44,136	$2,868,843$
Compact Fluorescent	175	8,412	$1,472,142$
Exit Sign Retrofits	59	3,131	184,739
Standard-Efficiency Fluorescent	351	32,536	$11,420,253$
All Other RE Interior Technologies	57	14,464	824,466
All Interior Customized Technologies	20	87,677	$1,665,871$
All Outdoor Technologies	94	9,449	888,223
TOTALS*	480	40,259	$19,324,537$

*Total for customers is total number of customers, rather than total number of installations.

Exhibit C-4

Engineering Change Estimates by Business Type

Building Type	Number of Customers	Mean Impact (kWh)	Total Impact $\mathbf{(k W h)}$
Office	114	40,892	$4,661,690$
Retail	122	33,257	$4,057,354$
College/University	1	229,912	229,912
School	65	42,193	$2,742,529$
Grocery	38	68,724	$2,611,521$
Restaurant	22	14,479	318,539
Health Care/Hospital	15	54,983	$1,869,423$
Hotel/Motel	34	24,904	821,837
Warehouse	35	40,885	$1,430,974$
Miscellaneous	480	40,259	$19,324,537$
TOTALS			580,757

C.3.2 Year-to-Year Energy Usage Change

The comparison between average consumption changes for participants and comparison group customers between pre- and post-installation periods can often provide some "indication" for the program realized impacts. Exhibit C-5 presents the average usage for participants and comparison group customers between 1992 and 1995, normalized to their 1992 average usage. It clearly shows that participants, as a group, have a lower energy growth rate when compared to the comparison group customers. In fact, the growth rate difference between participants and comparison group is approximately 13 percent,, the same saving ratio predicted by the unadjusted engineering estimates. The significance of this graph should not be overstated, however. This type of simple comparison, by itself, is inadequate to provide an accurate estimation of impacts, because other factors with the potential to affect the energy usage are not controlled in this comparison.

Exhibit C-5

Participant and Comparison Group Population Mean Usage 1992-1995

Participant and Comparison Group
Mean Usage 1992-1995
(Normalized to 1992 Usage)

C.3.3 Model Specification and Results

The billing regression analysis for the 1994 Commercial Lighting Evaluation used two different multivariate regression models under an integrated framework of providing unbiased and robust model estimates in the commercial sector. The key feature of our approach is that it employs a simultaneous equation approach to account for both the year-to-year and cross-sectional variation in a manner that consistently and efficiently isolates program impacts.

A baseline model is initially estimated using only the comparison group sample. This model estimates a relationship that is then used to forecast the post-installation-year energy consumption for both participants and the comparison group as a function of pre-installation year usage. In this way, baseline energy usage is forecasted for participants by assuming that their usage will change, on average, in the same way that usage did for the comparison group.

The SAE impact model used in this evaluation is specified as a two-stage Least Square (2SLS) model ${ }^{2}$ that allows for the utilization of all billing and sample data from two preinstallation periods (as described above). The estimated SAE realization rates are used to adjust the engineering estimates of expected annual energy impacts for the entire

[^24]participant population. These impacts are presented in Section 4 and are used to compute program realization rates.

C. 4 Analysis Periods

When the billing regression analysis is used to model the change of consumption attributable to the program measures, the first step is to isolate the pre- and postinstallation periods for each customer in the analysis database so that the impact of these measures can be verified.

In accordance with the Protocols, participants are defined by the "paid date" instead of "installation date." Therefore, almost all customers actually installed measures in 1993 or 1994, with 1994 installations accounting for approximately 75 percent of total installations. ${ }^{3}$

Two comparison periods are specified so that pre-installation data from both 1992 and 1993 can be used. Two sets of analysis periods supports the joint estimation of changes relative to two years of pre-installation data, using a simultaneous equation approach described below in the model specification section. The system is estimated using the 2SLS method as follows:

- The primary analysis periods are defined in a way that maximizes the inclusion of a majority of the sample. Because the installation dates cannot be accurately determined for all customers in the analysis database, the pre-installation period (October 1991 - September 1992) and a post-installation period (October 1994 September 1995) are defined for the entire participant sample. This definition creates a window so that billing data excluded from the analysis is wide enough to assure that all participants have the effects of program measures isolated from the pre- and post-installation periods. In this way, realization rates are not biased by errors in estimating dates of installation.
- A second analysis period is used to estimate the first stage of the 2SLS model. The first-stage model is used only to estimate customer-specific inter-year correlations, and is less sensitive to errors that may be introduced by the estimation of the installation dates. The second pair of pre- and post-installation periods compares 1993 (October 1992 - September 1993) to 1995 (October 1994 - September 1995). For these customers, pro-rated estimates of program impacts are computed to account

[^25]for when the installation likely occurred, if it is estimated that installation took place during a portion of the pre-installation period.

The specification of two analysis periods allows for the analysis of pre-installation periods in a manner that, through the use of the earlier pre-installation period, minimizes measurement error in the identification of installation, and retains the information of value contributed by the more recent pre-installation period. As discussed below, these analyses periods support seasonal billing data regression models. Seasonal models resulted in more stable results without artificially deflating the parameter standard errors that would be induced by autocorrelated monthly observations.

As mentioned above, it is difficult to determine the actual installation dates because they were often missing in the MDSS database. A decision rule was developed as part of the evaluation to determine the actual installation date for each participant, based upon the survey self-reported date, MDSS completion date (if not missing), pre- and post-inspection dates, and check issue date. The following exhibit presents the participant sample distribution by estimated installation date.

Exhibit C-5

Commercial Lighting Evaluation Sample Distribution
By Estimated Installation Date

Cumulative Participation \% by Month for Commercial Telephone Survey Participants

C. 5 Baseline Model

The baseline model explains post-installation energy usage as a function of the preinstallation energy usage, weather changes, and customer self-reports of factors that could affect energy usage. In order to isolate the program impact from the energy usage changes, only the comparison group is used to fit this model. The baseline model has the following functional form:

$$
\mathrm{kWh}_{\text {post, }, \mathrm{i}}=\sum_{\mathrm{j}} \alpha_{\mathrm{j}}+\beta \mathrm{kWh} \mathrm{pre}, \mathrm{i}+\gamma\left(\Delta \mathrm{CDD}_{\mathrm{i}}\right) * \mathrm{kWh}_{\text {pre }, \mathrm{i}}+\sum_{\mathrm{k}} \eta_{k} \mathrm{Chg}_{\mathrm{i}, \mathrm{k}}+\varepsilon
$$

Where
$\mathrm{kWh}_{\text {post,i }}$ and $\mathrm{kWh}_{\text {pre, } i}$ are customer i's annualized energy usage for the post- and pre- installation periods, respectively;
$\Delta \mathrm{CDD}_{\mathrm{i}}$ is the annual change of cooling degree days (base $65^{\circ} \mathrm{F}$) between postinstallation year and pre-installation year;

Chg $_{i, k}$ are the customer self-reported change variables from the survey data, including adding, replacing, or removing equipment associated with major end uses, changes in number of employees and square footage;
α_{j} is the indicator variable (0/1) for the j th business type. It equals 1 if the customer is in that business type and 0 otherwise;
β and γ are the estimated slopes on their respective independent variables; and, ε is the random error term of the model.

For each customer in the analysis dataset, two predicted usage values are calculated using the parameters of the baseline models estimated independently for the 1993 to 1995, and the 1992 to 1995 analysis periods. They both take the same functional form with different segment-level intercept series $\left(\alpha_{j}\right)$ and slopes (β and γ):

$$
k \hat{W} h_{\text {post, } i}=F_{\text {pre }}\left(k W h_{\text {pre }}, \Delta C D D D_{\text {pre }}\right)=\sum_{j} \alpha_{\mathrm{i}}+\beta k W h_{\text {pre }, i}+\gamma\left(\Delta C D D_{\mathrm{i}}\right) * \mathrm{kWh}_{\text {pre }, i}
$$

The output of the baseline models are presented in Exhibit C-7 for the 1993 to 1995 analysis periods, and in Exhibit C-8 for the 1992 to 1995 analysis periods. Outlier analysis has identified one customer with high influence on the coefficient estimate. This customer, a college/university comparison group member, has the highest usage among all comparison group customers, and t was eliminated from both models. The final functional relation estimated as follows:

Baseline Model (1993 to 1995):

$$
\begin{aligned}
\mathrm{kWh}_{95, \mathrm{i}}= & 586 * \mathrm{OFF}+2309 * \mathrm{RET}-23623 * \mathrm{UNIV}+2374 * \mathrm{SCH}+545 * \mathrm{GRO} \\
& -6993 * \mathrm{RES}+1327 * \mathrm{HEA}-3590 * \mathrm{HOTEL}-18177 * \mathrm{WH}+1039 * \mathrm{MISC} \\
& +1.10 * \mathrm{kWh}_{93, \mathrm{i}}+0.00071 * \mathrm{CDD}_{95-93, \mathrm{i}} * \mathrm{kWh}_{93, \mathrm{i}}
\end{aligned}
$$

Baseline Model (1992 to 1995):

$$
\begin{aligned}
\mathrm{kWh}_{95, \mathrm{i}}= & 86 * \mathrm{OFF}-5393 * \mathrm{RET}-36239 * \mathrm{UNIV}-547 * \mathrm{SCH}-5693 * \mathrm{GRO} \\
& -10617 * \text { RES }-4654 * \mathrm{HEA}-2520 * \mathrm{HOTEL}-7716 * \mathrm{WH}+8990 * \mathrm{MISC} \\
& +1.08 * \mathrm{kWh}_{92, \mathrm{i}}+0.000187 * \mathrm{CDD}_{95-92, \mathrm{i}} * \mathrm{kWh}_{92, \mathrm{i}}
\end{aligned}
$$

C. 6 SAE Model

Using the predicted post-installation usage values estimated in the baseline models, a simultaneous equation model is specified to estimate the SAE realization rates. This approach employs a 2SLS model that incorporates the billing data and engineering estimates in $1993{ }^{4}$ and 1995 to fit the first (or stage 1) model. The 1992 and 1995 data are used in the final (or stage 2) model. The first stage results in an estimate of customer-specific inter-year correlation that is used as an independent variable in the final model. The SAE simultaneous system can be described as follows:

Stage 1: $\quad \mathrm{kWh}_{95, \mathrm{i}}-\mathrm{F}_{93}\left(\mathrm{kWh}_{93}, \Delta \mathrm{CDD}_{93}\right)=\sum_{\mathrm{m}} \beta_{\mathrm{m}} \mathrm{Eng}_{\mathrm{m}}+\sum_{\mathrm{k}} \eta_{\mathrm{k}} \mathrm{Chg}_{\mathrm{i}, \mathrm{k}}+\mu_{93}$
Stage 2: $\quad \mathrm{kWh}_{95, \mathrm{i}}-\mathrm{F}_{92}\left(\mathrm{kWh}_{92}, \Delta \mathrm{CDD}_{92}\right)=\sum_{\mathrm{m}} \beta_{\mathrm{m}}^{\prime} \mathrm{Eng}_{\mathrm{m}}+\sum_{\mathrm{k}} \eta_{\mathrm{k}}^{\prime} \mathrm{Chg}_{\mathrm{i}, \mathrm{k}}+\mu_{92}$
with $\quad \mu_{92}=\lambda \mu_{93}+\sigma$
The last equation represents the assumption that there is correlation in usage between the two years. By including the estimated residual from the stage 1 model as an independent variable in the stage 2 model, the error term in the stage 2 model simplifies to a random error term σ and results in the estimation of a more accurate and stable final SAE model.

In the stage 1 model, the difference between predicted and actual usage in 1995 was used as the dependent variable in a SAE model. Based upon the estimated participation month, the pro-rated engineering estimates and change variables were used to explain

[^26]the deviation of the actual usage from the predicted usage. As discussed above, the predicted usage is estimated using only the comparison group to forecast the 1995 usage as a function of 1993 usage and change of cooling degree days from 1993 to 1995. This usage prediction presents what would have happened in the absence of the program.

The stage 1 model has the same basic specification as described later for the stage 2 model. The stage 1 model was estimated on a sample of 937 observations with the same one nonparticipant sample point removed as described in the baseline model above and the only output used from this model is the model residual, which represents a customer-specific inter-year correlation. Exhibit C-7 presents the model output statistics from the stage 1 model.

Exhibit C-7

Stage 1 Model Output

Parameter Description	Parameter Estimate	t-statistic
Estimated Engineering Impacts for 1993	-0.71	17.0
Prorated Change Variables		
Cooling Equip. Additions or Replacements in 1993	-3416.55	0.3
Cooling Equip. Removal in 1993	0.00	$\mathrm{~N} / \mathrm{A}$
Heating Equip. Additions or Replacements in 1993	46432.00	1.8
Heating Equip. Removal in 1993	-958.02	0.0
Other Equip. Additions or Replacements in 1993	14825.00	1.6
Other Equip. Removal in 1993	0.00	$\mathrm{~N} / \mathrm{A}$
Employee Additions in 1993	27298.00	2.9
Employee Reductions in 1993	-11189.00	0.9
Square Footage Additions in 1993	4675.41	0.3
Square Footage Reductions in 1993	15529.00	0.4
Lighting Equipment Additions in 1993	14587.00	1.9
Lighting Equipment Replacements in 1993	-9353.96	0.9
Lighting Equipment Removals in 1993	-18777.00	0.7

C. 7 Billing Regression Analysis Results

The coefficients of the engineering impacts in the stage 2 model are the SAE realization rates. Independent realization rates are estimated to provide PG\&E with business type and technology group level results. Exhibit C-8 summarizes the final SAE model results
that was estimated using 936 customers out of a total sample of 938 customers. ${ }^{5}$ In addition to one nonparticipant removed in the baseline model, one more observation was removed due to its large usage. ${ }^{6}$ The observation removed is a participant in the health care/hospital business type, and it has the highest usage among all participants. Exhibit C-8 summaries the independent variables used in the final stage 2 model, together with the t-statistics and the sample sizes available for each parameter estimate.

Exhibit C-8
 Billing Regression Analysis Final Model Outputs

Parameter Description	Parameter Estimate	90\% Confident Bounds		t-statistic	Sample Sizes
		Lower	Upper		
Customer Specific Intercept from Stage 1	0.95	0.89	1.01	25.7	936
Estimates Realization Rates					
RE Program Standard Fluorescence					
Offices	-0.94	-1.10	-0.78	10.1	90
Retails	-0.82	-1.14	-0.50	5.2	84
Others	-0.70	-0.94	-0.46	6.9	177
RE Program HIDs					
Offices	-0.94	-1.21	-0.67	6.1	10
Retails	-0.75	-1.17	-0.33	3.9	28
Others	-1.60	-1.87	-1.33	6.1	27
RE Program Compact Fluorescence	-0.62	-1.33	0.09	2.3	175
RE Program Other Indoor Measures	-0.40	-2.63	1.83	0.7	105
Customized Program Indoor Measures	-1.57	-1.71	-1.43	12.0	20
RE/Customized Outdoor Measures	-0.54	-1.61	0.53	1.5	94
Change Variables (Multiplied by Pre-Usage)					
Add Lighting	0.131	-0.122	0.384	6.5	80
Replace Lighting (Outside Program)	-0.027	-1.124	1.070	1.5	38
Remove Lighting	-0.171	-1.119	0.777	1.7	6
Replace HVAC	-0.031	-0.689	0.627	2.5	60
Replace Other Equipment	-0.057	-1.142	1.028	1.5	52
Add Employee	0.038	-0.819	0.895	1.9	103
Reduce Employee	-0.053	-0.484	0.378	3.8	90
Installed Non-Lighting Program Measures	-0.055	-0.534	0.424	3.4	18

[^27]- The dependent variable is the difference between the actual and predicted 1995 usage using the 1992 baseline model. Using the comparison between 1992 and 1995 will maximize the inclusion of the majority of the sample, as discussed in the analysis period section above.
- Customer-specific inter-year correlation is the residual term from the stage 1 model. The large t-statistics on this term suggest a strong correlation between customers' usage from one year to another. Inclusion of this term contributes to a more stable model in the sense that there is very low correlation between all the parameter estimates in the final model, especially the SAE realization rate parameters.
- Ten different realization rates are estimated corresponding to business type and technology group segments. Only those measures that have broad participation and relative high expected impacts can support a separate realization rate estimate. While all the realization rates have the right signs, some business types and technologies have much higher estimated impacts than others. All realization rate estimates are significant at the 95 percent confidence level (t -statistics greater that 2) except RE program "other indoor lighting" measures, since this segment likely has large variation and relatively low impacts. Only those realization rates that are statistically significant at the 95 percent level in the final model were used in the final gross impact calculation.
- All change variables have the expected signs. Only those change variables with a significant level greater than 0.15 were kept in the final model through a step-wise regression procedure. Variables excluded from the model include facility square footage changes, HVAC equipment removal, and participation in the 1993 programs.

While QC investigated the use of TOU and load research demand data as a means of supporting a similar SAE demand model, the load information was not available in sufficient quantity to support such an analysis. The demand analysis conducted during this evaluation is based upon engineering models calibrated to on-site audits, spot-watt measurements, lamp counts, and lighting logger data. The spot-watt data were used to calibrate new equipment manufacturers' cut sheet data based upon actual measurements. The lamp counts were used to determine operating factors and burnedout lamp rates pre- and post-installation. The lighting loggers were used to determine whether sites were actually operating in the "open" mode at the time of system peak. This was necessary, since many of the audits were conducted in the morning, and the lighting loggers confirmed the self-reports that the facility was open or closed at the time of system peak.

C.7.1 Relative Precision Calculation

Relative precision at 90 percent and 80 percent confidence levels for the adjusted gross energy impact estimates are calculated at each of the SAE analysis segments. As mentioned above, there are a total of ten analysis segments that were explicitly modeled and the relative precision estimates based upon the model output are presented in Exhibit C-9 below. In order to calculate the total program level adjusted gross impact and relative precision, the segment level results were weighted by their unadjusted engineering energy impact estimates in the following equations, and the results are presented in Exhibit C-9.

$$
\text { Total Adjusted Energy Impact }=\sum_{i} \beta_{i} \text { Eng }_{i}
$$

Where β_{i} and Eng $_{\mathrm{i}}$ are the SAE realization rates and unadjusted engineering impact estimates for segment i, respectively. The program level standard error can be estimated as: ${ }^{7}$

$$
\text { StdErr }=\sqrt{\sum_{i}\left(C V_{i} * \beta_{i} * E n g\right)^{2}}
$$

Where $\mathrm{CVi}=(\operatorname{std}(\beta \mathrm{i}) / \beta \mathrm{i})$ is the coefficient of variation in segment i , estimated in the billing regression model. Finally, the relative precision at 90 percent and 80 percent confidence levels were calculated as

$$
\mathrm{RP}=\frac{\mathrm{t} * \text { StdErr }}{\text { Total Adj. Energy Impact }}
$$

where t equals 1.645 and 1.282 for the 90% and 80% confidence levels, respectively.

[^28]
Exhibit C-9

Relative Precision Calculation

SAE Analysis Level	Engineering Gros Impact Estimate (MWh)	Realiztion Rate	Relative Precision at $\mathbf{9 0 \%}$	Relative Precision at $\mathbf{8 0 \%}$
RE Program Standard Fluorescents				
Offices	93,822	94%	16%	13%
Retails	30,756	82%	32%	25%
Others	83,607	70%	24%	18%
RE Program HIDs				
Offices	8,611	94%	27%	21%
Retails	10,810	75%	42%	32%
Others	15,302	160%	27%	21%
RE Program Compact Fluorescents	23,719	62%	71%	55%
RE Program Other Indoor Measures	15,635	40%	224%	175%
Customized Program Indoor Measures	22,117	157%	14%	11%
RE/Customized Program Outdoor Mea	18,058	54%	107%	84%
TOTALS	322,437	86%	16%	12%

The realization rates presented in Exhibit C-9 above are the gross SAE realization rates, that is the gross realized impacts as compared to the gross evaluation engineering estimates. In order to compute the final gross realization rates, the gross evaluation estimates compared to the gross ex ante estimates, three steps must occur. First, the gross evaluation engineering estimates presented in Exhibit C-9 are multiplied by the SAE realization rates in Exhibit C-9. Second, for the segments for which the 90 percent confidence level was not achieved (outdoor lighting and other indoor measures), the evaluation calibrated model engineering estimates of impact are to be assumed as the evaluation estimates (this is the same as assuming a realization rate of 1.0 in the previous step). When these two steps have been carried out, a total gross evaluation energy impact of $295,746 \mathrm{MWh}$ is achieved (see Exhibit C-9). Third, the evaluation estimate is divided by the gross ex ante estimate of impact (300,752 MWh total), resulting in the overall gross evaluation realization rate (gross evaluation estimates compared to the gross ex ante estimates) of 0.98 . These steps are carried out by segment in Section 4, Evaluation Results Summaries, of this report.

Appendix D

FINAL PARTICIPANTS TELEPHONE SURVEY


```
CONTACT INFO SCREEN:
ENTER PERSON ATTEMPTING TO CONTACT: &RESP
                    1 = Initial attempt to find contact
                    2 = Decision maker
                    3 = Technical
                    4 = Lighting
                    5 = Property Manager
```


Hello. This is \&LI__ . I'm with Quantum Consulting, a management consulting firm in Berkeley, California. We're assisting PG\&E in evaluating its (Customized Incentives / Retrofit Express) Program. We'd like to ask some general questions about your firm's participation in the program.

MNO01. Before we start, I would like to inform you that for quality control purposes, this call may be monitored by my supervisor. Would this be OK with you? \&MNO01 $1=$ Yes
$0=\mathrm{No}$
8 = (Refused)
$9=$ (Don't Know)

DECISION MAKER: IF RESPOND = . OR D THEN ASK: RESPOND = \&RESPOND This survey will cover equipment installed at \&ADDRESS ?

SC001d. Do you own the building at \&ADDRESS2 ? \&SC001D
1 = Yes $8=$ (Refused)
0 = No --> SKIP FIOO2 9 = (Don't Know)
FIOO1d. Does your firm occupy the space at \&ADDRESS 3 ?
\&FI001D $1=$ Yes --> SKIP FI003
0 = No --> SKIP SC016
8 = (Refused) --> SKIP FIOO3
$9=$ (Don't Know) --> SKIP FI003

FIOO2d. Does your firm manage the property at \&ADDRESS4 \qquad ?
\&FIOO2D $1=$ Yes --> SKIP FIOO4
0 = No --> SKIP FIOO3
8 = (Refused) --> SKIP FIO04
$9=$ (Don't Know) --> SKIP FIOO4

TECHNICAL: ASK WHERE RESPOND = T: RESPOND = \&RESPOND
This survey will cover equipment installed at
\&ADDRESS \qquad
Do you own the building at \&ADDRESS2 \qquad ?
\&SC001T
1 = Yes $8=$ (Refused)
$0=$ No --> SKIP FIOO2t $9=$ (Don't Know)
FIOO1t. Does your firm occupy the space at \&ADDRESS 3 ?
\&FIOO1T $1=$ Yes --> SKIP SC005
$0=$ No --> SKIP SC016
8 = (Refused) --> SKIP SC005
$9=$ (Don't Know) --> SKIP SC005
FIOO2t. Does your firm manage the property at \&ADDRESS4__ ?
\&FIOO2T $1=$ Yes --> SKIP FIOO3
$0=$ No --> SKIP SCOO5
8 = (Refused) --> SKIP SC005
$9=$ (Don't Know) --> SKIP SC005

LIGHTING: ASK WHERE RESPOND = L: RESPOND = \&RESPOND
This survey will cover equipment installed at \&ADDRESS \qquad
SCOO11. Do you own the building at \&ADDRESS2 \qquad ? \&SC001L
1 Yes $\quad 8=$ (Refused)
0 = No --> SKIP FIOO2l 9 = (Don't Know)
FIOO11. Does your firm occupy the space at \&ADDRESS 3 \qquad ?
\&FIOO1L 1 = Yes --> SKIP SC006
$0=$ No --> SKIP SC016
$8=$ (Refused) --> SKIP SC006
9 = (Don't Know)--> SKIP SC006
FIO02l. Does your firm manage the property at \&ADDRESS4 \qquad ? \&FIOO2L 1 = Yes -->SC006
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)

ASK ONCE:
SC016. Is there a property management firm for this building? \& SC016
$1=$ Yes
0 = No --> SKIP FIO03/SC005/SC006
8 = (Refused) --> SKIP FI003/SC005/SC006
$9=$ (Don't Know) --> SKIP FIO03/SC005/SC006

Comment1 \&PMCOM1
Comment2 \&PMCOM2
ENTER 1 TO SKIP FORWARD ====> \&SKIP
FIOO3. Are you the sole occupant of the building? \&FI003 $1=$ Yes $8=$ (Refused)
$0=$ No $\quad 9=$ (Don't Know)
FIO04. Is any part of \&ADDRESS leased space?
\&FI004 1 = Yes $8=$ (Refused)
$0=$ No $\quad 9=$ (Don't Know)
SC003. This survey will cover the equipment installed at \&ADDRESS2 \qquad . Are you the best person to talk to about \&BUSINESS \qquad 's decision to participate in the program and answer questions about economic decision making? \& SCOO
1 = Yes-->SKIP TO SC005 $8=$ (Refused)
0 = No 9 = (Don't Know)

SC004. Who would be the best person to talk to about \&BUSINESS \qquad decision to participate in the program?

PARTICIPATION CONTACT NAME \&DNAME
PARTICIPATION CONTACT PHONE (\&DAC_) \&DPRE___ - \&DLAST___ Ext. \&DEXT_
PARTICIPATION ORGANIZATION NAME \&DBUSNAM
PARTICIPATION CONTACT TITLE \&DTITLN
1 = President/Owner
2 = Senior Manager
3 = Financial Manager
4 = Energy Manager
5 = Operations Manger

Participant Telephone Survey D-4 1994 PG\&E Lighting Evaluation

```
                                    6 = Building Manger
                                    7 = Other SPECIFY: &DTITLOTR
Comment1 &DCOMM1
Comment2 &DCOMM2
ENTER 1 TO SKIP ===> &SKIP
    ASK SC005 IF SC016~=1:
    SC005. Are you the best person to answer questions about
        the size of the facility, and the type size and age
        of your major electrical equipment?
        &SC005
        1 = Yes --> SKIP SC006
        O = No
        8 = (Refused) --> SKIP SC006
        9 = (Don't Know) --> SKIP SC006
```

```
            SC007. Who would be the best person to talk to about
        &BUSINESS__ 's major electricity end uses?
LIGHT CONTACT NAME &LNAME
LIGHT CONTACT PHONE ( &LAC_ ) &LPRE__ - &LLAST__ Ext. &LEXT_
LIGHT ORGANIZATION NAME &LBUSNAM
LIGHT CONTACT TITLE &LTITLF
IF NOT LIGHT CONT ENTER 1 AND GET NEW TECH CONTACT, ELSE IF LIGHT ENTER 2
    ===> &WHOTECH
TECHNICAL CONTACT NAME &TNAME
TECHNICAL CONTACT PHONE ( &TAC_ ) &TPRE__ - &TLAST__ Ext. &TEXT_
TECHNICAL ORGANIZATION NAME &TBUSNAM
TECHNICAL CONTACT TITLE &TTITLN
    1 = President/Owner 5 = Opertions Manager
    2 = Senior Manager 6 = Building Manager
    3 = Financial Manager ( }7\mathrm{ = Other SPECIFY:
    4 = Energy Manager &TTITLOTR
```

\qquad

```
Comment1: \&TCOMM1
Comment2: \&TCOMM2
ENTER 1 TO SKIP FORWARD ==> \&SKIP
```

```
ASK IF SC001~=1:
```

ASK IF SC001~=1:
SC006. Are you the best person who can answer questions about the
hours of lighting equipment operation at
\&ADDRESS

```
\(\qquad\)
``` ?
 &SC006
 1 = Yes --> SKIP SC010
 0 = No --> SKIP SCOO8
 8 = (Refused) --> SKIP SC010
 9 = (Don't Know) --> SKIP SC010
```

SC008. Who would be the best person on site to talk to about \&BUSINESS__ 's hours of lighting operation?


Comment1: \&LCOMM1
Comment2: \&LCOMM2
ENTER 1 TO SKIP ===> \&SKIP
I'd like to start by confirming some information in PG\&E's program database. SC010. Our records show that \&BUSINESS
had high efficiency lighting installed at
\&ADDRESS__ through PG\&E's
$\& P R O G$ Program. Is this correct?
\&SC010
1 = Yes-->SKIP TO SC033/SC035 $0=$ No $2=$ SPECIAL CASE $8=(\operatorname{Ref}) 9$ (DK)
(CONFIRM QUANTITIES AND MEASURES. IF RADICALLY DIFFERENT: CONFIRM ADDRESS)
QTY Measure
\&SCQ1 \&SCM1
\&SCQ2 \&SCM2
\&SCQ3 \& SCM3
\&SCQ4 \&SCM4
\&SCQ5 \&SCM5
\&SCQ6 \&SCM6
\&SCQ7 \&SCM7
\&SCQ8 \&SCM8
\&SCQ9 \&SCM9
\&MULTAD ENTER 1 IF MULTIPLE ADDRESS; ELSE 0
\&MULTIM ENTER 1 IF INSTALLED IN MULTIPLE TIME FRAMES; ELSE 0

SC020. Pacific Gas and Electric's (Customized Incentives/Retrofit Express) Program provides rebates to encourage customers to install energy-efficient lighting. Do you recall

Participant Telephone Survey D-7 1994 PG\&E Lighting Evaluation
\&BUSINESS__ having lighting
installed as part of PG\&E's program?
\&SC020
1 = Yes
$0=$ No--> THANK AND TERMINATE
8 = (Refused)-->THANK AND TERMINATE
9 = (Don't Know)-->THANK AND TERMINATE
SC031. What is the correct address for the facility where \&BUSINES2_ 's lighting retrofit
occured?
\&CORRADDR_Correct Address
\&CORRCITY_ Correct City
\&CORRZIP Correct Zip
T\&T IF ADDRESS IS COMPLETELY DIFFERENT, OTHERWISE CONTINUE
\&SC031 1 = SIMILAR ADDRESS -->SKIP TO SC035/SC037
$0=$ DIFFERENT ADDRESS ---> T\&T
DECISION MAKER:
SCO35. When was the installation of your retrofitted lighting
equipment completed?
(ENTER MONYYYY)
\&SCO35__ (MONYYYY) IF NOT BETWEEN JUL1993 AND SEP1994 -> T\&T
\&SC036-(8 = Refused $9=$ Don't Know) --> T\&T
ALWAYS ENTER 1 TO SKIP FORWARD ====> \&SKIP
TECHNICAL:
SC037. When was the installation of your retrofitted lighting
equipment completed?
(ENTER MONYYYY)
\&SC037__ (MONYYYY) IF NOT BETWEEN JUL1993 AND SEP1994 -> T\&T
\&SC038 (8 = Refused 9 = Don't Know) --> T\&T
ALWAYS ENTER 1 TO SKIP FORWARD ====> \&SKIP2
LIGHTING:
\&SC039A_ (MONYYY)
\&SC039B ( $8=$ Refused $9=\mathrm{DK}$ )
ALWAYS ENTER 1 TO SKIP FORWARD ===> \&SKIP3
ALL:
FIOO5. Does the PG\&E account \&ACCOUNT__ located at the service address \&ADDRESS__ cover
multiple buildings or does it cover only one building?
\&FIOO5
1 = One Building --> SKIP TO FI025
2 = Multiple Buildings
3 = Portion of a building
8 = (Refused)--> SKIP TO FIO25
$9=$ (Don't Know)--> SKIP TO FI025
FI007. Are there multiple PG\&E accounts for this address?
\&FI007 $1=$ Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
FIO10. How many buildings are covered under this service address?
\&FI010 \# buildings 888 = (Refused)
IF FIO10 = 1 or REF/DK SKIP FI025 999 (Don't Know)
FI015. Are there separate PG\&E bills for the individual buildings? \&FI015

Participant Telephone Survey D-8 1994 PG\&E Lighting Evaluation

```
1 = Yes 8 = (Refused)
0 = No }9=\mathrm{ (Don't Know)
FIO25. How many other firms occupy space in the building? \&FIO25 Number of firms \(888=\) (Refused)
 999 = (Don't Know)
BC021. How many other locations of your business are participating in the program? \&BC021 Locations \(888=\) (Refused)
999 = (Don't Know)
```

ALL
EI010. Approximately how many people are currently employed at the facility, including both full- and part-time employees? \&EIO10 Number of Employees
888 = (Refused)
999 = (Don't Know)
EI020. Since January 1992, has the number of people employed at this facility changed?
\&EIO20
1 = Yes
0 = No--->SKIP TO FIO40
8 = (Refused)--->SKIP TO FI040
9 = (Don't Know)--->SKIP TO FIO40
EIO30. In what month and year did this change in the number of employees occur?
(ENTER MONTH/YEAR)
EIO30. \&EIO30__ MONYYYY
EIO31. \&EIO31__ YYYY ( $8=$ Refused 9 = Don't Know)
IF DK ASK FOR BEST GUESS OR YEAR

EIO40. Approximately how many people were employed at this facility before the change occurred, including both full and part-time employees? \&EIO40 Number of Employees 777 = Seasonal Workforce --> ENTER COMMENTS BELOW $888=$ (Refused) 999 = (Don't Know)
\&EI041
\&EI042
\&EI043
ENTER 1 TO SKIP FORWARD --> \&SKIP

FIO40. Which of the following descriptions best characterizes your firm's organizational structure? \&FI040
1 = Chain or multifacility (owned or managed by a
parent corporation operating other locations)
2 = Franchise (owns a branch or subsidiary) --> SKIP TO FIO50
3 = Independent-->SKIP TO FIO50

```
 8 = (Refused) --> SKIP TO FI050
 9 = (Don't Know) --> SKIP TO FI050
FIO45. What is the name of your parent company?
&FIO45
```

$\qquad$

```
FIO50. What is the legal tax status of your firm, that is what is
 your tax status for federal tax reporting purposes?
 &FI050
 1 = Proprietary or investor-owned, (i.e., a for-profit
 organization)
 2 = Public: federal, state or municipal agency
 3 = 501(c3): Private, nonprofit
 8 = (Refused)
 9 = (Don't Know)
ASK IF FIO40=1; ELSE SKIP FIO60:
FIO55. What is the tax status of your parent company?
 &FI055
 1 = Proprietary or investor-owned, (i.e., a for-profit
 organization)
 2 = Public: federal, state or municipal agency
 3 = 501(c3): Private, nonprofit
 8 = (Refused)
 9 = (Don't Know)
```

DECISION MAKER:
FI060. Where are decisions regarding energy-related investments for \&BUSINESS $\qquad$ made?
\&FI060
1 = Made locally, on site
2 = Made at regional head office
3 = Made at national head office
4 = Made at international head office
5 = Made by PM firm/building owner
6 = Other FIO62.
Specify: \&FI062
$\qquad$
8 = (Refused)
9 = (Don't Know)

FIO70. What were the \&REVTYPE $\qquad$ fiscal 1992 revenues for your firm? \&FI070
\&S1_ $1=$ Less than $\$ 50,000$
\&S2_ $2=\$ 50,000$ to $\$ 99,999$
\&S3_ $3=\$ 100,000$ to $\$ 249,999$
\&S4_ $4=\$ 250,000$ to $\$ 499,999$
\&S5_ $5=\$ 500,000$ to $\$ 999,999$
\&S6_ $6=\$ 1$ million to $\$ 2.49$ million
\&S7_ $7=\$ 2.5$ million to $\$ 4.99$ million
\&S8_ $8=\$ 5$ million to $\$ 9.99$ million
\&S9_ $9=\$ 10$ million to $\$ 49.99$ million
\&S10_ $10=\$ 50$ million or more $88=$ (Refused) 99 = (Don't Know)

```
 RECORD LEVEL OF REVENUE:
 FI075. &FI075 1 = Local 3 = National
 2 = Regional 4 = Worldwide
IF LEASE=1 THEN ASK; ELSE SKIP TO EIO10: LEASE = &L
 FI080. Do the tenants at &ADDRESS
```

$\qquad$

``` pay all, none, or
 a portion of their electric utilities through their lease?
 &FI080
 1 = ALL utilities INCLUDED in lease --> SKIP TO FI110
 2 = Pay some utilities through lease and others directly
 to PG&E
 3 = Pays ALL utilities directly to PG&E--> SKIP FI110
 8 (Refused) --> SKIP FII10
 9 (Don't Know) --> SKIP FI110
IF (LEASE=1 AND FIO80 = 2): LEASE = &L FI080 = &FI080
FIO90. Which of the following utilities are paid for through the
-FI100. lease? (ENTER '1' FOR ALL THAT APPLY)
 (8 = Refused 9 = Don't Know)
 &FI090 Indoor Lighting &FI095 Outdoor Lighting
 &FI091 Heating &FI096 Cooling
 &FI092 Ventilation &FI097 Water Heating
 &FIO93 Electricity to Wall Outlets &FIO98 Refrigeration
 &FI094 Cooking &FI099 Other SPECIFY:
 &FI100
 FI110. What is the length of the current lease at
 &ADDRESS
```

$\qquad$

``` ?
 &FI110 Number of years 888 = (Refused)
 999 = (Don't Know)
FI115. How many years are left on the lease?
 &FI115 Number of years 888 = (Refused)
 999 = (Don't Know)
```

```
FI120. Is this the current tenant's first lease at this address?
 &FI120
 1 = Yes 8 = (Refused)
 O = No 9 = (Don't Know)
```

Now I'd like to ask some questions about your experience with
the Lighting Retrofit program.
IS001. Do you have a lighting contractor that you regularly
use/rely on?
\&IS001
1 = Yes
0 = No SKIP --> SKIP ISO10
8 = (Refused) --> SKIP IS010
$9=$ (Don't Know) --> SKIP IS010
IS002. Did this person tell you about the Retrofit Lighting
Program?
\&ISOO2
1 = Yes
$0=\mathrm{N} \circ$
$8=$ (Refused)
$9=$ (Don't Know)
IS010. How did you FIRST learn about the Retrofit Lighting
Program?
\&ISO10 (DO NOT READ)
CUSTOMER APPROACHED SOMEONE:
1 = Respondent approached vendor/contractor
2 = Respondent approached PG\&E concerning another matter and
found out about program
SOMEONE APPROACHED THE CUSTOMER:
3 = Contacted by PG\&E account rep
4 = Contacted by lighting contractor
5 = Contacted by electrical contractor
6 = PG\&E Brochure in mail
7 = Bill Insert
8 = Word of mouth from friends or co-workers within the
organization
$9=$ Word of mouth from friends or other business people
outside of company
10 = Television, Radio, Newspaper ad
11 = Other SPECIFY: IS020. \&IS020
$88=$ (Refused) $99=$ (Don't Know)
PP010. Has your firm participated in any other PG\&E sponsored
energy conservation programs besides the Retrofit
Lighting Program?
\&PP010
$1=$ Yes
0 = No--->SKIP TO DS020
$2=$ Not aware of other programs--->SKIP TO DS020
8 = (Refused)--->SKIP TO DS020
$9=$ (Don't Know)--->SKIP TO DS020

PPO20. In what year did you participate in the other program(s)? (ENTER YEAR)
PP020. \&PP020__ YYYY
( $8=$ Refused 9 = Don't Know)
Now I'd like to get your opinion of key aspects of the Retrofit Lighting Program.

DS020. Was the retrofit project delayed for any reasons, once you had decided to participate?
(DO NOT READ; ENTER 1 FOR ALL THAT APPLY; 0 FOR THOSE THAT DO NOT)
( $8=$ Refused 9 = Don't Know)
\&DS019 No Delays ---> SKIP SR080
\&DS020 Equipment supply problems
\&DS021 Contractor delays
\&DS022 Financial Limitations/Cash flow
\&DS023 Delays within the organization
\&DS024 Decided to spend money on something else
\&DS025 Other SPECIFY: \&DS026
SR080. If you had to make your equipment selection again, would you install the same equipment?
\&SR080
1 = Yes --> SKIP EA010
$0=\mathrm{No}$
8 = (Refused) --> SKIP EA010
$9=$ (Don't Know) --> SKIP EA010
SR090. What would be your main reason for selecting other equipment?
\&SR0 90
1 = Increase the quantity of light
2 = Improve the color rendition
3 = Reduce glare
4 = Eliminate ballast failure
5 = Other : SPECIFY : \&SR091
$8=$ (Refused)
$9=$ (Don't Know)
EA010. Have you altered how energy is used at the facility since you installed the new lighting?
\&EA010
$1=$ Yes
0 = No --> SKIP PD010
8 = (Refused) --> SKIP PD010
$9=$ (Don't Know) --> SKIP PD010
EA020. What are you doing differently?
(ENTER 1 FOR ALL THAT APPLY ELSE ENTER 0)
\&EA020 Turning on fewer lights
\&EA021 Running HVAC less
\&EA022 Decreased lighting hours
\&EA023 Other SPECIFY: \&EA024
\&EA025 Other SPECIFY: \&EA026
\&EA027 Other SPECIFY: \&EA028
\&EA029 Other SPECIFY: \&EA030
( $8=$ Refused $9=$ Don't Know)
PD010. When you were making your decision to purchase new lighting equipment through the program, what was the most important factor in your decision to install the new lighting?

Participant Telephone Survey D-13 1994 PG\&E Lighting Evaluation
(READ CATEGORIES IF NECESSARY)
\&PD010
$=$ Acquiring the latest technology
= Saving money on electric bills
= Obtaining a rebate
$=$ Replacing old or broken equipment
= Knowing that the program was sponsored by PG\&E
$=$ Improving the quality of light for employees and customers
$=$ Helping to protect the environment
$=$ Previous experience with other PG\&E programs
$=$ Obtaining advice from another branch of your firm
$=$ Obtaining advice from PG\&E account rep
$=$ Obtaining advice from contractors
$=$ Other SPECIFY: PD011: \&PD011
$=$ (Refused)
$99=$ (Don't Know)
FR100. Why had you not previously installed high efficiency lighting equipment prior to participating in the program?
(DO NOT READ LIST; ENTER 1 FOR ALL THAT APPLY, ELSE ENTER 0)
FR100. \&FR100 Lack of money to invest in it.
FR101. \&FR101 Payback/return on investment not attractive enough.
FR102. \&FR102 Concerned that it might not save as much as claimed
FR103. \&FR103 Didn't know enough about EE lighting before
FR104. \&FR104 Didn't know where/how to obtain EE lighting.
FR105. \&FR105 Hadn't had time.
FR106. \&FR106 Concerned about light quality/brightness
FR107. \&FR107 Tenants didn't want a change
FR108. \&FR108 Decision made elsewhere
FR109. \&FR109 Was planning to install when heard about program
FR110. \&FR110 No Need/Not a Priority
FR111. \&FR111 Just remodeled
FR112. \&FR112 Just moved in/moving out soon
FR113. \&FR113 Did it less than 5 years ago.
FR114. \&FR114 Other1 SPECIFY: FR115 \&FR115
FR116. \&FR116 (Refused)
FR117. \&FR117 (Don't Know)
SR020. If you had not replaced this equipment under the program, how long would you have waited to replace it?
\&SR020 Years
777 = (Would not have replaced)
$888=$ (Refused)
999 = (Don't Know)
FR010. How long had you been shopping for new lighting equipment before you found out about the program?
$0=$ (Not Shopping; approached by vendor/contractor) \&FR010 weeks (888 = Refused 999 = Don't Know)

FR011. How many estimates or quotes did you obtain before purchasing your new equipment?
\&FR011 Estimates
$888=$ (Refused)
$999=$ (Don't Know)
FRO12. Had you also considered purchasing and installing standard efficiency lighting equipment?
\&FR012
$1=$ Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
FR013. How long did it take to decide what to purchase once you found out about the program?
\&FR013 weeks (0 = less than 1 week) ( $888=$ Refused $999=$ Don't Know)

NG019. Did you delay a lighting purchase in order to participate in the Retrofit Program?
\&NG019
1 = Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
FR020. Before you knew about the Lighting Program, which of the following statements best describes your company's plans to install lighting fixtures? (READ RESPONSES.) \&FR020

1 = You hadn't even considered purchasing new lighting equipment.
2 = You were interested in installing lighting equipment, but hadn't yet decided on energy efficent lighting. (I.e. you were considering all your options.)

3 = You had already decided to install HIGH efficiency lighting, but probably not within the year.
4 = You had already decided to install HIGH efficiency lighting within the year, and you had already selected equipment.
8 = (Refused)
$9=$ (Don't Know)
FR014. How many people were involved in the decision to participate?
\&FR014 People
$888=$ (Refused) $999=$ (Don't Know)
FR015. Were you the person who made the final decision?
\&FR015
1 = Yes --> SKIP FR017
0 = No
8 = (Refused) $-->$ SKIP FR017
$9=$ (Don't Know) --> SKIP FR017

FR016. What is the job title of the person who made the final decision?
\&FR016N
1 = President/Owner $2=$ Senior Manager
3 = Financial Manager $4=$ Energy Manager
5 = Operations Manager 6 = Building Manager
7 = Other SPECIFY: \&FR016OTR
FR017. How long did it take to reach a decision to participate in the program?
\&FR017 weeks
88 = Refused
99 = Don't Know
ASK IF LEASE=1 Lease= \&L
FIO65. How active a role do tenants take in making equipment purchase decisions for the property at \&ADDRESS $\qquad$ ? \&FI065
$1=$ Very active: they are involved in every aspect of the purchase and you possess veto power
2 = Somewhat active: they approve all decisions
3 = Slight role: they have a voice but it's a single vote among many
4 = None
$8=$ (Refused)
$9=$ (Don't Know)
DC010. Which of the following financial criteria do you consider when evaluating lighting investments?
(READ LIST; ENTER 1 FOR ALL THAT APPLY; ELSE ENTER 0)
( $8=($ Refused) $9=(D o n ' t$ Know))
DC010. \&DC010 Payback
DC011. \&DC011 Internal Rate of Return
DC012. \&DC012 Net Present Value
DC013. \&DC013 Other SPECIFY: DC014. \&DC014
IF DC010=1 THEN ASK DC020
DC020. What is the payback period you require? \&DC020
$1=1$ year or less
$2=2$ years or less
$3=3$ years or less
$4=4$ years or less
$5=5$ years or less
$6=6$ years or less
$7=7$ years or less
$8=8$ years or less
$9=9$ years or less
$10=10$ years or less
11 = Other SPECIFY: DC021. \&DC021
$88=$ (Refused)
99 = (Don't Know)

IF DC011=1 THEN ASK DC030
DC030. What is your organization's required internal rate of return?
\&DC030 Percent
$888=$ (Refused)
999 (Don't Know)

Participant Telephone Survey D-16 1994 PG\&E Lighting Evaluation

IF DC012=1 THEN ASK DC040
DC040. What is the discount rate you use when determining the net present value of an investment?
\&DC040 Percent
888 = (Refused)
999 = (Don't Know)
ASK ALL:
DC050. Do you use a different \&CRITERIA__ for evaluating energy efficient equipment purchases than you use for general investments?
\&DC0 50
1 = Yes
$0=$ No --> SKIP TR030
8 = (Refused) --> SKIP TR030
$9=$ (Don't Know) --> SKIP TR030
ASK DC051 IF DC010=1 OR DC011=1 OR DC012=1, ELSE SKIP TR030
DC051. Is the \&CRITERI2 $\qquad$ energy efficent purchases \&TYPE1_ or \&TYPE2_ than that which you use for other general investments? \&DC051
1 = Higher/Shorter
2 = Lower/Longer
8 = (Refused) $9=$ (Don't Know)

PG\&E is considering redesigning some aspects of the program. I'd like to get your opinion of some possible program options.

TR030. Would you have installed the same high efficiency \&EQUIP_ equipment if rebates were eliminated, but
PG\&E offered financing at 1 percentage point below the
prime rate?
\&TR030
1 = Yes--->SKIP TO TR070
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
ASK IF TR030~=1
TR040. What if the interest rate were 1.5 percentage points
below the prime rate?
\&TR040
1 = Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
TR050. What if rebates were reduced by $50 \%$ and PG\&E offered financing at 1 percentage point below the prime rate? \&TR050
1 = Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
TR070. What if rebates were reduced by $50 \%$, but $P G \& E$ conducted an on-site audit of the facility, and provided you with

```
detailed engineering analyses and recommendations?
&TR070
1 = Yes
O = No
8 = (Refused)
9 = (Don't Know)
```

```
FUTURE SERVICES:
 PR020. Would you be interested in having PG&E operate or maintain
 the lighting equipment at the facility?
 (i.e. routine replacement of burned out bulbs)
 &PR020
 1 = Yes
 O = No
 2 = Depends on price
 8 = (Refused)
 9 = (Don't Know)
 PR040. Would you be interested in having all of the
 building's systems checked out to ensure proper operation
 and efficient use of energy? (i.e. building recommissioning)
 &PR040
 1 = Yes
 O = No
 8 = (Refused)
 9 = (Don't Know)
 PR060. Would you be interested in having PG&E help you with any
 future equipment selection?
 &PR060
 1 = Yes
 O = No
 8 = (Refused)
 9 = (Don't Know)
 PR001. How frequently do you have contact with your PG&E account rep?
 -PR002 (CODE NUMBER OF TIMES AND PERIOD IT IS IN)
 &PR001 Times
 &PR002 Time Period --> IF NOT 0 SKIP PR090
 O = Never
 1 = Day
 2 = Week
 3 = Month
 4 = Year
 8 = (Refused)
 9 = (Don't Know)
 PR005. Does someone else in the firm have contact with your PG&E rep?
 &PR005
 1 = Yes
 0 = No --> SKIP PR090
 8 = (Refused)--> SKIP PR090
 9 = (Don't Know) --> SKIP PR090
 PR010-11. How often does this person have contact with your PG&E
 account rep?
 &PR010 Times --> IF 0, 8, 9 SKIP PR090
 &PR011 Time Period
 0 = Never
 1 = Day
Participant Telephone Survey D-18 1994 PG&E Lighting Evaluation
```

```
2 = Week
3 = Month
4 = Year
8 = (Refused)
9 = (Don't Know)
```

PR015. What is the name, title, and phone number of this person?
NAME: \&REPNAME $\qquad$
( \&REPAC ) \&REPPRE - \&REPLAST Ext \&REPEXT Phone
TITLE: \&REPTITN
1 = President/Owner
2 = Senior Manager
3 = Financial Manager
4 = Energy Manager
5 = Operations Manger
6 = Building Manger
7 = Other SPECIFY: \&REPTIOTR
ENTER 1 TO SKIP ===> \&SKIP
PR090. Are there any additional services you would like to see PG\&E provide?
(ENTER 1 FOR ALL THAT APPLY)
( $8=$ Refused 9 = Don't Know) \&PR090 other SPECIFY: \&PR091 \&PR092 other SPECIFY: \&PR093 \&PR094 other SPECIFY: \&PRO95

ENTER 1 TO SKIP FORWARD ===> \&SKIP
FUTURE PLANS:
FR070. Are you currently planning on making any further lighting retrofits within the next two years?
\&FR070
$1=$ Yes
0 = No --> SKIP DS070
8 = (Refused) --> SKIP DS070
$9=$ (Don't Know) --> SKIP DS070
FRO75. Will the new lighting be high or standard efficiency? \&FR075
1 = High efficiency
$0=$ Standard efficiency
$8=$ (Refused)
$9=$ (Don't Know)
FRO77. Are you planning to make this change through one of PG\&E's Retrofit programs?
\&FR077
1 = Yes
$0=\mathrm{N} \circ$
$8=$ (Refused)
$9=$ (Don't Know)
FR080. What type and how many fixtures are you planning to install? (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES TO BE CHANGED; IF NONE THEN ENTER 0) $888=$ (Refused) $\quad 999=$ (Don't Know)
(READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES TO BE ADDED)
FR080. \&FR080 4 Foot T8 fluorescent
FR081. \&FR081 8 Foot T8 fluorescent
FR082. \&FR082 4 Foot Energy saver fluorescent

Participant Telephone Survey D-19 1994 PG\&E Lighting Evaluation

```
 FR083. &FR083 8 Foot Energy saver fluorescent
 FR084. &FR084 4 Foot T12 fluorescent
 FR085. &FR085 8 Foot T12 fluorescent
 FR086. &FR086 Incandescent
 FR087. &FR087 Compact Fluorescent
 FR088. &FR088 High pressure sodium
 FR089. &FR089 Electronic Ballasts
 FR090. &FR090 Magnetic Ballasts
 FR091. &FR091 Metal Halide
CONTINUED ===> ENTER 1 TO SKIP ===> &SKIP
 ENTER TYPE AND NUMBER OF FIXTURES PLANNING TO ADD:
 IF NONE ENTER O
 888=(Refused) 999 = (Don't Know)
 FR092. &FR092 Mercury Vapor
 FR093. &FR093 Quartz
 FR094. &FR094 Reflectors (w/Delamping)
 FR095 &FR095 LED Exit Lighting
 FR096 &FR096 Watt Saver/Power Choke Devices
 FR097. &FR097 Other SPECIFY: FR098. &FR098
 FR099r. &FR099R (Refused)
 FR099d. &FR099D (Don't Know)
```

ENTER 1 TO SKIP FORWARD ===> \&SKIP
DS070. On a 1 to 7 scale, where 1 means Extremely DISsatisfied
and 7 means Extremely Satisfied, how satisfied are you,
overall, with PG\&E's Lighting Program?
\&DS070 (ENTER NUMBER BETWEEN 1 AND 7)
88 = (Refused)
99 = (Don't Know)
DS080. Are you DISsatisfied with the program for any reason?
\&DS080
1 = Yes --> ATTEMPT TO CATEGORIZE; ELSE FILL IN OPEN ENDED
0 = No--->SKIP TO DSO90
8 = (Refused)--->SKIP TO DS090
9 = (Don't Know)--->SKIP TO DS090
(DO NOT READ, ENTER 1 FOR ALL THAT APPLY; ELSE ENTER 0)
8 = (Refused) $9=$ (Don't Know)
DS081 \&DS081 problems with contractor
DS082 \&DS082 rebate too small
DS083 \&DS083 problems with equipment
DS084 \&DS084 not seeing any bill savings
DS085 \&DS085 unresolved problems
DS086 \&DS086 problems with getting rebate in a timely manner
DS087 \&DS087 problems with the contracting representative
DS088 \&DS088
DS089 \&DS089

```
 IF NO COMMENT OR TO SKIP; ENTER 1 ===> &SKIP
 DS090. Do you have any suggestions for improving PG&E's
 Retrofit Lighting Program?
 &DS090
 1 = Yes
 0 = No--->SKIP TO BCO11/BHO10/SCREEN 137
 8 = (Refused)--->SKIP TO BC011/BH010/SCREEN 137
 9 = (Don't Know)--->SKIP TO BC011/BH010/SCREEN 137
(ENTER 1 FOR ALL THAT APPLY, O FOR THOSE THAT DO NOT; ELSE OPEN ENDED)
 DS091 &DS091 Better/More Information
 DS092 &DS092 Post-Installation Inspection
 DS093 &DS093 Improve Quality of light
 DS094 &DS094 Larger Rebates
 DS095 &DS095 Smaller Rebates
 DS096 &DS096 Change Qualifying Measures
 DS097 &DS097 Closer Supervision of Contractors
 DS100 &DS10
 DS101 &DS101
 DS102 &DS102
 IF NO COMMENT, OR TO SKIP FORWARD, ENTER 1 ====> &SKIP
```

```
 The following questions refer to your "FACILITY," which means ALL
 the buildings and tenants SERVICED BY PG&E UNDER THE FOLLOWING
 Billing Name: &BUSINESS
```

$\qquad$

``` ADDRESS: \&ADDRESS
``` \(\qquad\)
```

 ACCOUNT # : &ACCOUNT
 BC011. What is the main business ACTIVITY at the facility?
 &BC011
 1 = Office 88 = (Refused)
 2 = Retail (non-food) 99 = (Don't Know)
 3 = Manufacturing/Assembly
 4 = Warehouse
 5 = Restaurant
 6 = Grocery Store
 7 = School
 8 = Hotel or Motel
 9 = Hospital
 10 = College/University
 11 = Health Care
 12 = Municipality
 13 = Industrial Process
 14 = Other SPECIFY: BC012 &BC012
 FC060. In what year was the facility built?
 &FC060
 1 = 1992-Pres 5 = 1979-1982 9 = 1950-1959
 2 = 1988-1991 6 = 1975-1978 10 = 1940-1949
 3 = 1986-1987 7 = 1970-1974 11 = 1930-1939
 4 = 1983-1985 8 = 1960-1969 12 = 1929 or earlier
 88 = (Refused)
 99 = (Don't Know)
 FC070. How many stories does the building have?
 &FC070 Stories
 88 = (Refused)
 99 = (Don't Know)
 FC080. What is the square footage per floor of the building
 at &ADDRESS
    ```
\(\qquad\)
```

 (exclude enclosed garage spaces, basements, stairwells, elevator shafts,etc)
 &FC080 SQ FT
 8 = (Refused)
 9 = (Don't Know)
 FC081. On each floor, what percentage of the space is conditioned?
 &FC081 percent
 88 = (Refused)
 999 = (Don't Know)
 FC095. Is the retrofitted area located in a conditioned space?
 &FC095
 1 = Yes
 O = No
 2 = Split conditioned/non-conditioned
 8 = (Refused)
 9 = (Don't Know)
 ASK FC100 IF FC095=2: ELSE SKIP FC110:
 FC100. What percentage of the retrofitted area is in a
 conditioned space?
    ```
            &FC100 percent 888= (refused) 999 = (Don't Know)
    FC110. Since January 1992, has the square footage covered by
    account # &ACCOUNT__ increased, decreased, or
    stayed the same?
    &FC110
    1 = Increased floor space
    2 = Decreased floor space
    3 = Stayed the same-->SKIP TO FR034
    8 = (Refused) -->SKIP TO FR034
    9 (Don't Know) -->SKIP TO FR034
    FC120. What is the approximate area, in square feet, of this
        change?
        &FC120 Square Feet
        8 = (Refused)
        9 (Don't Know)
    FC130. In what month and year did this change in floor space occur?
        (ENTER MONTH/YEAR)
    FC130. &FC130__ MONYYYY
    FC131. &FC131 YYYY (8 = Refused 9 = Don't Know)
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
    ASK IF FC110=1; ELSE SKIP TO FR033
    FC140. In what month and year was this additional floor space
        occupied?
        (ENTER MONTH/YEAR)
    FC140. &FC140__ MONYYYY
    FC141. &FC141 YYYY (8 = Refused 9 = Don't Know)
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
ASK WHERE FC110 IS NOT 1:
    FR033. When was your last major space remodel?
(ENTER MONTH/YEAR IF DON'T KNOW MONTH, ASK FOR BEST GUESS AND/OR YEAR)
        FR033. &FR033__ MONYYYY
        FR034. &FR034 YYYY
        (7 = Never Remodeled 8 = Refused 9 = Don't Know)
        ( IF 7, 8, or 9 THEN --> SKIP LF030/ILO01)
    FR035. Did this remodel include space covered by the retrofit?
        &FR035
        1 = Yes --> SKIP LF030/IL001
        0 = No --> SKIP LFO30/ILO01
        8 = (Refused) --> SKIP LF030/IL001
        9 = (Don't Know) --> SKIP LF030/IL001
    LF030. How many weekdays per year are you closed for holidays?
        &LF030 Days 888 = (Refused)
                        999 = (Don't Know)
LF040. How many Saturdays per year are you closed for holidays?
Participant Telephone Survey D-23 1994 PG&E Lighting Evaluation
```


The next questions refer to the facility's conditioned floor space. That is, the areas of the facility that are heated or cooled.

LF014. Excluding exit signs, what percent of the retrofitted lights are night lights or safety lights that remain on twenty-four hours per day? \&LF014 Percent $888=$ (Refused) $999=$ (Don't Know)

LF025. Again excluding exit lights, but considering night lights, saftey lights, lighting used by custodial staff, and general lighting, what percentage of the facility's indoor lights are on during NON-operating hours? \&LF025 Percent $888=$ (Refused) $999=$ (Don't Know)

LF017. What percent of the retrofitted lights are on during the following SUMMER WEEKDAY hours?
$888=$ (Refused) $999=$ (Don't Know)
12 AM \&LF017X Percent
AM \&LF017A Percent 12 PM \&LF017L Percent
AM \&LF017B Percent 1 PM \&LF017M Percent
AM \&LF017C Percent 2 PM \&LF017N Percent
AM \&LF017D Percent 3 PM \&LF0170 Percent
AM \&LF017E Percent 4 PM \&LF017P Percent
AM \&LF017F Percent 5 PM \&LF017Q Percent
AM \&LF017G Percent 6 PM \&LF017R Percent
AM \&LF017H Percent 7 PM \&LF017S Percent
AM \&LF017I Percent 8 PM \&LF017T Percent
10 AM \&LF017J Percent 9 PM \&LF017U Percent
11 AM \&LF017K Percent 10 PM \&LF017V Percent
11 PM \&LF017W Percent
ENTER 1 TO MOVE FORWARD ===> \&SKIP

```
LF018. Do you follow the same schedule in the WINTER?
    &LF18
    1 = Yes --> SKIP IL001/SCREEN 137
    O = No
    8 = (Refused)--> SKIP IL001/SCREEN 137
    9 = (Don't Know)--> SKIP ILO01/SCREEN 137
```

LF020. What percent of the retrofitted lights are on during the following WINTER WEEKDAY hours?
$888=$ (Refused) $999=$ (Don't Know)
12 AM \&LF020X Percent
AM \&LF020A Percent 12 PM \&LF020L Percent
AM \&LF020B Percent 1 PM \&LF020M Percent
AM \&LF020C Percent 2 PM \&LF020N Percent
AM \&LF020D Percent 3 PM \&LF0200 Percent
AM \&LF020E Percent 4 PM \&LF020P Percent
AM \&LF020F Percent 5 PM \&LF020Q Percent
AM \&LF020G Percent 6 PM \&LF020R Percent
AM \&LF020H Percent 7 PM \&LF020S Percent
AM \&LF020I Percent 8 PM \&LF020T Percent
10 AM \&LF020J Percent 9 PM \&LF020U Percent

11 AM \&LF020K Percent 10 PM \&LF020V Percent

ENTER 1 TO MOVE FORWARD TO IL001/SCREEN 137 ===> \&SKIP
Now, I'd like to ask about the type of lighting equipment at your facility before and after participating in the program.

IL001. What percentage of your facility lighting equipment was replaced through the program?
\&IL001 $888=$ (Refused)
999 = (Don't Know)
IL005. Of the bulbs that were replaced through the program, what percent were burned out or not working before the retrofit?
\&IL005 Percent
$888=$ (Refused)
999 = (Don't Know)
SR010. What was the average age of the lighting fixtures you replaced? \&SR010 Years

888 = (Refused)
999 = (Don't Know)
IL010. Since January 1992, have you made any changes in indoor lighting at your facility other than changes through the program or routine replacement of burned out bulbs? \&IL010
$1=$ Yes
$0=$ No--->SKIP TO LP010/DS030
$8=$ (Refused) $--->$ SKIP TO LP010/DS030
$9=$ (Don't Know)--->SKIP TO LP010/DS030

```
    IL020. In what months and years did you make these
                changes?
                (ENTER MONTH/YEAR)
    ILO20. &ILO20__ MONYYYY
    IL021. &IL021 YYYY (8 = Refused 9 = Don't Know)
                (SECOND MONTH AND YEAR IF APPLICABLE)
                    (ENTER MONTH/YEAR)
    IL025. &ILO25__ MONYYYY
    IL026. &IL026 YYYY (8 = Refused 9 = Don't Know)
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
ENTER 1 TO SKIP FORWARD ===> &SKIP
IL040. What type and how many fixtures were affected?
    (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES ADDED OR REMOVED,
        IF NONE THEN O)
        888 = (Refused) 999 = (Don't Know)
            (O = NO CHNG)
            (1 = ADDED) NUMBER
            (2 = REMOVED)
IL040. &IL040 &IL040N 4 Foot T8 fluorescent
IL041. &IL041 &IL041N 8 Foot T8 fluorescent
IL042. &IL042 &IL042N 4 Foot Energy saver fluorescent
IL043. &IL043 &IL043N 8 Foot Energy saver fluorescent
IL044. &IL044 &IL044N 4 Foot T12 fluorescent
IL045. &IL045 &IL045N 8 Foot T12 fluorescent
IL046. &IL046 &IL046N Incandescent
IL047. &IL047 &IL047N Compact Fluorescent
IL048. &IL048 &IL048N High pressure sodium
IL049. &IL049 &IL049N Metal Halide
CONTINUED, ENTER 1 TO MOVE FORWARD ===> &SKIP
ENTER TYPE AND NUMBER OF FIXTURES AFFECTED, IF NONE THEN O
888 = (Refused) 999 = (Don't Know)
        O = No Chng
        1 = Added NUMBER
        2 = Removed
IL050. &IL050 &IL050N Mercury Vapor
IL051. &IL051 &IL051N Quartz
IL052. &IL052 &IL052N Reflectors (w/Delamping)
IL053. &IL053 &IL053N Electronic Ballasts
IL054. &IL054 &IL054N Magnetic Ballasts
IL055 &IL055 &IL055N LED Exit Lighting
IL056 &IL056 &IL056N Watt Saver/Power Choke Devices
IL057. &IL057 &IL057N Other SPECIFY: IL058 &IL058
```

\qquad

```
ENTER 1 TO SKIP FORWARD ===> \&SKIP
GOTO DS030/LP010
```

```
                    ASK WHERE BALLASTS=1: &BALLAST ELSE ASK LP010
DS030. After completing the lighting retrofit, did you experience
                any problems with the new ballasts?
                &DS030
                1 = Yes
                O = No --> SKIP LP010
                8 = (Refused) --> SKIP LP010
                9 (Don't Know) --> SKIP LP010
                    DSO45. How were your equipment problems finally resolved?
            &DS045
            1 = Equipment was replaced by the contractor
                2 = Equipment was replaced by the customer
                3 = Problem still exists.
                4 = Other SPECIFY: DS046: &DS046
                8 = (Refused)
                9=(Don't Know)
            LP010. Has any of the lighting equipment that was installed as
            part of the lighting program been removed?
            &LP010
            1 = Yes
            0 = No--->SKIP TO SR050
            8 = (Refused)--->SKIP TO SR050
            9 (Don't Know) --->SKIP TO SR050
            LP020. In what months and years did you make these
            changes?
                (ENTER MONTH/YEAR)
LP020. &LP020__ MONYYYY
LP021. &LP021 YYYY (8 = Refused 9 = Don't Know)
            (SECOND MONTH AND YEAR)
            (ENTER MONTH/YEAR)
LP025. &LP025__MONYYYY
LP026. &LP026 YYYY (8 = Refused 9 = Don't Know)
ENTER 1 TO SKIP FORWARD ===> &SKIP
LP030. What type and how many fixtures were removed?
            (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES REMOVED,
            IF NONE THEN O)
                888=(Refused) 999=(Don't Know)
                        NUMBER
    LP030. &LP030 4 Foot T8 fluorescent
    LP031. &LP031 8 Foot T8 fluorescent
    LP032. &LP032 4 Foot Energy saver fluorescent
    LP033. &LP033 8 Foot Energy saver fluorescent
    LP034. &LP034 4 Foot T12 fluorescent
    LP035. &LP035 8 Foot T12 fluorescent
    LP036. &LP036 Incandescent
    LP037. &LP037 Compact Fluorescent
    LP038. &LP038 High pressure sodium
    LP039. &LP0399 Metal Halide
    CONTINUED, ENTER 1 TO SKIP FORWARD ===> &SKIP
```

```
    ENTER NUMBER OF FIXTURES REMOVED, IF NONE THEN O
    888 = (Refused) 999 = (Don't Know)
```

NUMBER
LP040. \&LP040 Mercury Vapor
LP041. \&LP041 Quartz
LP042. \&LP042 Reflectors (w/Delamping)
LP043. \&LP043 Electronic Ballasts
LP044. \&LP044 Magnetic Ballasts
LP045 \&LP045 LED Exit Lighting
LP046 \&LP046 Watt Saver/Power Choke Devices
LP047. \&LP047 Other SPECIFY: LP048 \&LP048

```
ENTER 1 TO SKIP FORWARD ===> &SKIP
```

 LP050. Why did you remove the equipment?
 (DO NOT READ LIST; ENTER 1 FOR ALL THAT APPLY,ELSE ENTER 0)
 LP050. \&LP050 Did not like light quality.
 LP051. \&LP051 Not enough light.
 LP052. \&LP052 Equipment not reliable.
 LP053. \&LP053 Harmonics problems.
 LP054. \&LP054 Ballasts Failed
 LP055. \&LP055 Other SPECIFY: LP056 \&LP056
 LP057. \&LP057 (Refused)
 LP058. \&LP058 (Don't Know)
 LP060. Did you replace the lighting equipment that you removed?
 \&LP060
 1 = Yes
 0 = No--->SKIP TO SR050
 8 = (Refused) --->SKIP TO SR050
 9 = (Don't Know)--->SKIP TO SR050
 LP070. What type and how many fixtures replaced the equipment that
 was removed? \(888=\) (Refused) \(999=\) (Don't Know)
 (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES ADDED)
 LP070. \&LP070 4 Foot T8 fluorescent
LP071. \&LP071 8 Foot T8 fluorescent
LP072. \&LP072 4 Foot Energy saver fluorescent
LP073. \&LP073 8 Foot Energy saver fluorescent
LP074. \&LP074 4 Foot T12 fluorescent
LP075. \&LP075 8 Foot T12 fluorescent
LP076. \&LP076 Incandescent
LP077. \&LP077 Compact Fluorescent
LP078. \&LP078 High pressure sodium
LP079. \&LP079 Electronic Ballasts
LP080. \&LP080 Magnetic Ballasts
LP081. \&LP081 Metal Halide
CONTINUED, ENTER 1 TO SKIP FORWARD ==> \&SKIP
ENTER TYPE AND NUMBER OF FIXTURE WHICH REPLACED THOSE REMOVED
$0=$ NONE OF THAT TYPE
$888=$ (Refused) $\quad 999=$ (Don't Know)

```
LP082. &LP082 Mercury Vapor
LP083. &LP083 Quartz
LP084. &LP084 Reflectors (W/ Delamping)
LP085 &LP085 LED Exit Lighting
LP086 &LP086 Watt Saver/Power Choke Devices
LP087. &LP087 Other SPECIFY: LP088. &LP088
```

ENTER 1 TO SKIP FORWARD ===> \&SKIP
SR050. Compared to the old lighting equipment, would you say the amount of light has increased, decreased, or remained the same?
\&SR050
1 = Increased --->SKIP TO SR070
2 = Decreased
3 = Same --->SKIP TO SR070
8 = (Refused) --->SKIP TO SR070
$9=$ (Don't Know)--->SKIP TO SR070
IF SR050 = 2 ASK:
SR060. Are you turning on more lights to compensate? \&SR0 60
1 = Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
SR070. Compared to the old lighting equipment, would you say the color rendition is better, worse, or the same?
\&SR0 70
1 = Better
2 = Worse
3 = Same
8 = (Refused)
$9=$ (Don't Know)
SR075. Compared to the old lighting equipment, would you say the new lighting gives off less, more or the same amount of glare?
\&SR075
1 = Less
2 = More
3 = Same
$8=$ (Refused)
$9=$ (Don't Know)
OL010. Is OUTDOOR lighting included on the facility's utility bill? \&OL010
$1=$ Yes
0 = No--->SKIP TO CE010
8 = (Refused)--->SKIP TO CE010
9 = (Don't Know)--->SKIP TO CE010
OL020. Since January 1992, have you made any changes in OUTDOOR lighting at your facility?
\&OL020
1 = Yes
0 = No--->SKIP TO CE010
8 = (Refused) --->SKIP TO CE010

Participant Telephone Survey D-30 1994 PG\&E Lighting Evaluation

```
        9 = (Don't Know)--->SKIP TO CE010
OL030. In what month and year did you make these changes?
    (ENTER MONTH/YEAR)
OL030 &OLO30__ MONYYYY
    &OL031 YYYY (8 = Refused 9 = Don't Know)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OL040. Did you ADD TO, REPLACE, or REMOVE outdoor lighting?
        &OL040
        1 = Added lighting
        2 = Replaced lighting
        3 = Added AND Replaced lighting
        4 = Removed
        8 = (Refused)
        9 = (Don't Know)
```


COOLING EQUIPMENT:

The next series of questions pertain to the cooling equipment at the facility.

CE010. What type of system is used to air condition this facility?
[If there is more than one system, enter the one used to
cool the largest portion of this facility.]
\& CE0 10
$0=$ No A/C--->SKIP TO CE080
1 = Central plant
2 = Small Packaged Systems (i.e. Rooftop or Ground)
3 = Wall or window units
$4=$ Heat pump
5 = Other SPECIFY: CE011 \&CE011
$8=$ (Refused)
$9=$ (Don't Know)
CEO15. What is the primary fuel used to cool your facility? \&CE015
1 = Electricity
2 = Natural Gas
3 = Other SPECIFY: CE016. \&CE016
8 = (Refused)
$9=$ (Don't Know)
CEO30. Does this system include an economizer?
\& CE0 30
$1=$ Yes
0 = No
8 = (Refused)
$9=$ (Don't Know)

CE050. What percent of the facility is air conditioned at 4PM on Summer weekdays?
(ASK OPEN ENDED, THEN PROBE WITH CATEGORIES)

> \&CE050 Percent

$100=100 \%$	$222=60-79 \%$	$444=20-39 \%$	$0=0 \%$	888
$=111=80-99 \%$	$333=40-59 \%$	$555=1-19 \%$		999

CE060. During what months is the cooling system operated?
(READ LIST IF NECESSARY; ENTER NUMBER 1 FOR ALL THAT APPLY)

Participant Telephone Survey D-31 1994 PG\&E Lighting Evaluation

```
CE059. &CE059 All Year --> SKIP CE080
CE060. &CE060 January
CE061. &CE061 February
CE062. &CE062 March
CE063. &CE063 April
CE064. &CE064 May
CE065. &CE065 June
CE066. &CE066 July
CE067. &CE067 August
CE068. &CE068 September
CE069. &CE069 October
CE070. &CE070 November
CE071. &CE071 December
CE072. &CE072 (Refused)
CE073. &CE073 (Don't Know)
            TO SKIP FORWARD ENTER 1: ===> &SKIP
CE080. Since January 1992, have you ADDED TO, REMOVED, or
                REPLACED an older cooling system?
                    &CE080
                            0 = No Change-->SKIP TO HEO15
                            1 = Added
                            2 = Replaced
                            3 = Added and Replaced
4 = Removed
8 = (Refused)-->SKIP TO HE015
9 = (Don't Know)-->SKIP TO HE015
CE090. In what month and year did you make these changes?
            (ENTER MONTH/YEAR)
CE090. &CE090__ MONYYYY
CE091. &CE091 YYYY (8 = Refused 9 = Don't Know)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
IF CE080=1 THEN SKIP TO CE120; ELSE ASK:
CE110. What fuel was used to power the old system?
    &CE110
    1 = Electricity
    2 = Natural Gas
    3 = Other SPECIFY: CE111. &CE111
    8 = (Refused)
    9 = (Don't Know)
IF CE080=2 or 4 THEN SKIP TO HE015
CE120. What fuel does the cooling system addition use?
    &CE120
    1 = Electricity
    2 = Natural Gas
    3 = Other SPECIFY: CE121. &CE121
    8 = (Refused)
    9 = (Don't Know)
```

 HEATING EQUIPMENT
 HE015. What is the main type of heating system used to heat your facility?
\&HE015 1 = Central electric furnace 19 = None
2 = Central heat pump $88=$ (Refused)
Participant Telephone Survey D-32 1994 PG\&E Lighting Evaluation

```
                    3 = Central gas furnace 99 = (Don't Know)
                    4 = Gas boiler
                    5 = Electric boiler
                    6 = Fuel oil furnace or boiler
                    7 = Electric strip heat
            8 = Baseboard electric heating
            9 = Room or wall AC with electric strip heat
                1 0 ~ = ~ P e r m a n e n t , ~ n o n - e l e c t r i c ~ r o o m ~ h e a t e r s
                1 1 ~ = ~ W h o l e - h o u s e ~ w a l l ~ o r ~ f l o o r ~ e l e c t r i c ~ f u r n a c e
                12 = Whole-house wall or floor gas furnace
                13 = Portable electric heater
                14 = Portable kerosene heater
                15 = Wood or coal burning stove or fireplace
                16 = Solar collector
                17 = Propane heating system
                    18 = Other HE016. &HE016
HEO20. What is the primary fuel used to heat your facility?
            &HEO2O
            1 = Natural Gas
            2 = Propane or Bottled Gas
            3 = Oil
            4 = Electricity
            5 = Other SPECIFY: HE021 &HE021
            8 = (Refused)
            9 = (Don't Know)
HE050. What percent of your facility is heated at 8AM
            on WINTER weekdays?
            (ASK OPEN ENDED, THEN PROBE WITH CATEGORIES)
        &HE050 Percent
    100=100% 222=60-79% 444=20-39% 0=0% 888 = (Refused)
    111=80-99% 333=40-59% 555=1-19% 999 = (Don't Know)
```

```
HE060. During what months is the heating system operated?
(READ LIST IF NECESSARY; ENTER NUMBER 1 FOR ALL THAT APPLY)
HE059. &HE059 All Year ---> SKIP HE080
HE060. &HE060 January
HE061. &HE061 February
HE062. &HE062 March
HE063. &HE063 April
HE064. &HE064 May
HE065. &HE065 June
HE066. &HE066 July
HE067. &HE067 August
HE068. &HE068 September
HE069. &HE069 October
HE070. &HE070 November
HE071. &HE071 December
HE072. &HE072 (Refused)
HE073. &HE073 (Don't Know)
        TO SKIP FORWARD ENTER 1: ==> &SKIP
HE080. Since January 1992, have you ADDED TO, REPLACED, OR REMOVED
        an older heating system?
        &HE080
        0 = No Change-->SKIP TO OE010
        1 = Added
        2 = Replaced
        3 = Added and Replaced
        4 = Removed
        8 = (Refused)-->SKIP TO OE010
        9 = (Don't Know)-->SKIP TO OE010
HEO90. In what month and year did you make these changes?
        (ENTER MONTH/YEAR)
HEO90. &HEO9O__ MONYYYY
HE091. &HE091 YYYY (8 = Refused 9 = Don't Know)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
IF HEO80=1 THEN SKIP TO HE120, ELSE ASK:
HE110. What fuel was used to power the old system?
    &HE110
    1 = Natural Gas
    2 = Propane or Bottled Gas
    3 = Oil
    4 = Steam
    5 = Electricity
    6 = Other SPECIFY: HE111. &HE111
    = (Refused)
    9 = (Don't Know)
IF HEO80=2 OR 4 THEN SKIP TO OE010
```

HE120. What fuel does the heating system addition use?
\& HE120
$1=$ Natural Gas
2 = Propane or Bottled Gas
$3=$ Oil
$4=$ Electricity
5 = Other SPECIFY: HE121. \&HE121
$8=$ (Refused)
$9=$ (Don't Know)
OTHER EQUIPMENT:
OE010. Since January 1992, have you changed other equipment
that makes up 10% or more of the facility's annual electric bill?
\&OE010
1 = Yes
0 = No-->SKIP TO OC010
8 = (Refused)-->SKIP TO OC010
$9=$ (Don't Know) -->SKIP TO OC010
OE011. Which of the following types of equipment were changed?
(READ FIRST THREE THEN ASK FOR OTHER)
(READ LIST; ENTER 1 FOR ALL THAT APPLY)
OE012. \&OE012 Water heating
OE013. \&OE013 Cooking
OE014. \&OE014 Refrigeration
Were there any other end uses changed? (RECORD BELOW)
OE015. \&OE015 Other1 SPECIFY: OE016. \&OE016
OE017. \&OE017 Other2 SPECIFY: OE018. \&OE018
OE019. \&OE019 (Refused) ---> SKIP to OC010
OE011. \&OE011 (Don't Know) ---> SKIP TO OC010
ASK OE020-OE050 IF OE012=1
OE020. In what month and year did you change your
water heating equipment?
(ENTER MONTH/YEAR)
OE020. \&OEO20__ MONYYYY
OE021. \&OE021 YYYY (8 = Refused 9 = Don't Know)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE030. Did you ADD TO, REMOVE, or REPLACE water heating equipment?
\&OE030
1 = Added--->SKIP TO OE050
2 = Replaced
3 = Added and Replaced
4 = Removed
8 = (Refused) --->SKIP TO OE060/OE100/OE140/OE180/OC010
$9=$ (Don't Know)--->SKIP TO OE060/OE100/OE140/OE180/OC010

```
    OE040. What fuel was used to power the old water heating
        equipment?
        &OE040
        1 = Natural Gas
        2 = Propane or Bottled Gas
        3 = Oil
        4 = Electricity
        5 = Other SPECIFY: OE041. &OE041
        8 = (Refused)
        9 = (Don't Know)
    IF OE030= 4 THEN SKIP TO OE060/OE100/OE140/OE180/OC010
    OE050. What fuel does the water heating equipment addition use?
        &OE050
        1 = Natural Gas
        2 = Propane or Bottled Gas
        3 = Oil
        4 = Electricity
        5 = Other SPECIFY: OE051. &OE051
        8 = (Refused)
        9 = (Don't Know)
    ASK OE060-OE090 IF OE013=1
    OE060. In what month and year did you change your
        cooking equipment?
        (ENTER MONYYYY)
    OE060. &OE060__ MONYYYY
    OE061. &OE061- YYYY (8 = Refused 9 = Don't Know)
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
    OE070. Did you ADD TO, REMOVE, or REPLACE cooking equipment?
        &OE070
        1 = Added--->SKIP TO OE090
        2 = Replaced
        3 = Added and Replaced
        4 = Removed
        8 = (Refused)--->SKIP TO OE100/OE140/OE180/OC010
        9 = (Don't Know)--->SKIP TO OE100/OE140/OE180/OC010
    OE080. What fuel was used to power the old cooking equipment?
        &OE080
        1 = Natural Gas
        2 = Propane or Bottled Gas
        3 = Oil
        4 = Electricity
        5 = Other SPECIFY: OE081. &OE081
        8 = (Refused)
        9 = (Don't Know)
```

IF OE070= 4 THEN SKIP TO OE100/OE140/OE180/OC010
OEO90. What fuel does the cooking equipment addition use?

```
            &OE090
            1 = Natural Gas
            2 = Propane or Bottled Gas
            3 = Oil
            4 = Electricity
            5 = Other SPECIFY: OE091. &OE091
            8 = (Refused)
            9 = (Don't Know)
    ASK OE100-OE130 IF OE014=1
    OE100. In what month and year did you change your
                refrigeration equipment?
                            (ENTER MONTH/YEAR)
    OE100. &OE100__ MONYYYY
    OE101. &OE101 YYYY (8 = Refused 9 = Don't Know)
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE110. Did you ADD TO, REMOVE, or REPLACE refrigeration equipment?
        &OE110
        1 = Added--->SKIP TO OE130
        2 = Replaced
        3 = Added and Replaced
        4 = Removed
        8 = (Refused)--->SKIP TO OE140/OE180/OC010
        9 = (Don't Know)--->SKIP TO OE140/OE180/OC010
OE120. What fuel was used to power the old refrigeration equipment?
        &OE120
        1 = Natural Gas
        2 = Propane or Bottled Gas
        3 = Oil
        4 = Electricity
        5 = Other SPECIFY: OE121. &OE121
        = (Refused)
        9 = (Don't Know)
    IF OE110=2 OR 4 THEN SKIP TO OE140/OE180/OC010
    OE130. What fuel does the refrigeration equipment addition use?
        &OE130
        1 = Natural Gas
        2 = Propane or Bottled Gas
        3 = Oil
        4 = Electricity
        5 = Other SPECIFY: OE131. &OE131
        = (Refused)
        9 = (Don't Know)
```

 ASK OE140-OE170 IF OE015=1
 OE140. In what month and year did you change your \&EQUIP
 (ENTER MONTH/YEAR)
 OE140. \&OE140__ MONYYYY
 OE141. \&OE141 YYYY (8 = Refused 9 = Don't Know)
 Participant Telephone Survey D-37 1994 PG\&E Lighting Evaluation

```
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE150. Did you ADD TO, REMOVE, or REPLACE &EQUIP2
    equipment?
    &OE150
    1 = Added--->SKIP TO OE170
    2 = Replaced
    3 = Added and Replaced
    4 = Removed
    8 = (Refused)--->SKIP TO OE180/OC010
    9 = (Don't Know)--->SKIP TO OE180/OC010
OE160. What fuel was used to power the old &EQUIP
        equipment?
        &OE160
    1 = Natural Gas
    2 = Propane or Bottled Gas
    3 = Oil
    4 = Electricity
    5 = Other SPECIFY: OE161. &OE161
    8 = (Refused)
    9 = (Don't Know)
IF OE150=2 OR 4 THEN SKIP TO OE180/OC010
OE170. What fuel does the &EQUIP
```

\qquad

``` equipment addition use?
    &OE170
    1 = Natural Gas
    2 = Propane or Bottled Gas
    3 = Oil
    4 = Electricity
    5 = Other SPECIFY: OE171. &OE171
    = (Refused)
    9 = (Don't Know)
ASK OE180-OE210 IF OE017=1
OE180. In what month and year did you change your
    &EQUIP___ equipment?
        (ENTER MONTH/YEAR)
OE180. &OE180__ MONYYYY
OE181. &OE181 YYYY (8 = Refused 9 = Don't Know)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
```

```
        OE190. Did you ADD TO, REMOVE, or REPLACE &EQUIP2
        equipment?
        &OE190
        1 = Added--->SKIP TO OE202
        2 = Replaced
        3 = Added and Replaced
        4 = Removed
        8= (Refused)--->SKIP TO OC010
        9 = (Don't Know)--->SKIP TO OC010
        OE200. What fuel was used to power the old &EQUIP
        equipment?
        &OE200
        1 = Natural Gas
        2 = Propane or Bottled Gas
        3 = Oil
        4 = Electricity
        5 = Other SPECIFY: OE201. &OE201
        8 = (Refused)
        9 = (Don't Know)
        IF OE190=2 OR 4 THEN SKIP TO OC010
    OE202. What fuel does the &EQUIP
```

\qquad

``` equipment
        addition use?
            &OE202
            1 = Natural Gas
            2 = Propane or Bottled Gas
            3 = Oil
            4 = Electricity
            5 = Other SPECIFY: OE203. &OE203
            8 = (Refused)
            9=(Don't Know)
    OC010. Since January 1992, have you made any other changes
        that would affect energy usage at this facility?
        &OC010
        1 = Yes
        O = No--->SKIP TO EMO10
        8 = (Refused) --->SKIP TO EM010
        9 (Don't Know) ---> SKIP TO EM010
    oc020. What type of changes were made?
&OC020
&OC021
OC030. In what month and year were these changes made?
        (ENTER MONTH/YEAR)
OC030. &OCO30___ MONYYYY
OC031. &OC031 YYYY (8 = Refused 9 = Don't Know)
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
```

EM010. Do you have an in-house Energy Management System at this facility?
\&EM010
1 = Yes
$0=$ No-->SKIP TO CP010
8 = (Refused)-->SKIP TO CP010
9 = (Don't Know)-->SKIP TO CP010
EMO20. In what month and year was the Energy
Management System installed? (ENTER MONTH/YEAR)
EMO20. \&EMO20__ MONYYYY
EM021. \&EM021 YYYY (8 = Refused 9 = Don't Know)

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
CP010. Do you have a cogeneration plant at this facility?
\&CP010
1 = Yes
$0=$ No --> SKIP
8 = (Refused) --> SKIP
9 = (Don't Know) --> SKIP
CP020. In what month and year did the cogeneration plant begin operating? (ENTER MONTH/YEAR)

CP020. \&CP020_ MONYYYY
CP021. \&CP021 YYYY ($8=$ Refused $9=$ Don't Know)

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
Those are all of the questions I have for you at this time. Before you go I'd like to get your job title. USE JOB KEY TO CODE ALL:

1 = President/Owner 2 = Senior Manager
3 = Financial Manager 4 = Energy Manager
5 = Operations Manager 6 = Building Manager
7 = Other SPECIFY
DECISION TITLE CFOO9. Job Title: \&DTITLN SPECIFY: \&DTITLOTR_
TECHNICAL TITLE CF010. Job Title: \&TTITLN SPECIFY: \&TTITLOTR
LIGHTING TITLE CF011. Job Title \<ITLN SPECIFY: \<ITLOTR____
$==>\& D I V _C O D 2<==\quad==>$ \&SERVCITY $<==\quad \&$ OSFLAG <== $1=$ OK OS
$0=\mathrm{NO} \mathrm{OS}$
TO SKIP TO ON-SITE RECRUITMENT ENTER 1:
MEASTYP: \&MEASTYP
TO SKIP TO COMMENT FIELDS ENTER 2:
BUSTYP: \&BUSTYP
TO SKIP FORWARD ENTER 1 OR 2 HERE ==> \&SKIP
DE1. Do you have any additional comments at this time? \&DE1 $1=$ Yes $0=$ No $8=$ (Refused) $9=$ (Don't Know) \&DECOMM1 \&DECOMM2
\& DECOMM3
IF THERE ARE ANY COMMENTS ABOUT THE ANSWERS WITHIN THIS SURVEY ENTER 1 HERE, THEN ENTER YOUR COMMENTS==> \&COMM
\&NOTE1
\&NOTE2
\&NOTE3
\&NOTE4
\&NOTE5
\&NOTE6
IF THE RESPONDENT ASK FOR PG\&E REP'S PHONE \# ENTER 1, AND THEN REASON \&REP \&NOTREP1 \&NOTREP2
Those are all the questions I have for today. On behalf of Pacific Gas and Electric, thank you very much for your time and cooperation.
F4 TO FIRST SCREEN AND CODE RESULT

At present we are surveying $P G \& E$ customers who HAVE participated in the Efficient Indoor Lighting Program. Since you have not participated in this $P G \& E$ program, we have no further questions for you at this time. On behalf of PG\&E, I'd like to thank you very much for your cooperation today.

At present we are surveying PG\&E customers who had their equipment installed between Jan 1994 and Sep 1994, and who's equipment was installed in an area cover by only one account. On behalf of PG\&E, I'd like to thank you for your time.
(F4 TO FIRST SCREEN AND CODE RESULT)

BEGIN ON SITE RECRUITMENT. ASK OF PARTICIPATION CONTACT:
A subsample of customers who complete telephone surveys are being asked to participate in an additional on-site follow up visit. Your site has been selected for one of these follow up visits. These onsite visits provide additional data that is used to evaluate and verify the savings achieved by the new lighting equipment. Would you be interested in having one of our qualified technicians come and conduct an on-site inspection?

OSOO1. \&OSOO1
1 = Respondent will continue
$0=$ Respondent will not continue

OSO05. Are you the best person who can allow us access to physically inspect the retrofitted electrical equipment? \&OSOO5 $\quad 1=$ Yes --> SKIP TO 2nd CONTACT
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
Who would be the best person who could allow us access to
physically inspect the retrofitted electrical equipment?
READ CONTACTS, OR GET ADDITIONAL CONTACT INFO:
DECIS NAME: \&DNAME
DECIS TITLE: \&DTITLF
DECIS BUSINESS: \&DBUSNAM
DECIS PHONE: (\&DAC_) \&DPRE - \&DLAST Ext: \&DEXT
TECH NAME: \&TNAME

Participant Telephone Survey D-41 1994 PG\&E Lighting Evaluation

```
    TECH TITLE: &TTITLF
    TECH BUSINESS: &TBUSNAM
    TECH PHONE: ( &TAC_ ) &TPRE - &TLAST Ext: &TEXT
    LIGHT NAME: &LNAME
    LIGHT TITLE: &LTITLF
    LIGHT BUSINESS: &LBUSNAM
    LIGHT PHONE: ( &LAC_ ) &LPRE - &LLAST Ext: &LEXT
IF DECIS ENTER 1, ELSE IF TECH ENTER 2, ELSE IF LIGHT ENTER 3,
ELSE IF NEW ON-SITE CONTACT ENTER 4: ===> &WHOOS
```

ENTER INFO FOR ON-SITE CONTACT:

OS NAME:	$\& O S N A M E$
OS BUSINESS:	$\& O S B U S N A M$
OS PHONE:	$(\& O S A C)$ \&OSPRE - \&OSLAST Ext: \&OSEXT
OS TITLE:	$\& O S T I T L N$
	$1=$ President/Owner
	$2=$ Senior Manager
	$3=$ Financial Manager
	$4=$ Energy Manager
	$5=$ Operations Manager
	$6=$ Building Manager
	7

ENTER 1 TO SKIP FORWARD: ==> \&SKIP

Who would be an additional person who can allow us access and be knowlegable about the electrical equipment at the facility? READ CONTACT NAMES, IF NOT ONE OF THESE, GET ADDITIONAL CONTACT INFO:

```
    DECIS NAME: &DNAME
    DECIS TITLE: &DTITLF
    DECIS BUSINESS: &DBUSNAM
    DECIS PHONE: ( &DAC ) &DPRE - &DLAST Ext: &DEXT
    TECH NAME: &TNAME
    TECH TITLE: &TTITLF
    TECH BUSINESS: &TBUSNAM
    TECH PHONE: ( &TAC ) &TPRE - &TLAST Ext: &TEXT
    LIGHT NAME: &LNAME
    LIGHT TITLE: &LTITLF
    #
    LIGHT BUSINESS: &LBUSNAM
    LIGHT PHONE: ( &LAC ) &LPRE - &LLAST Ext: &LEXT
IF DECIS ENTER 1, ELSE IF TECH ENTER 2 , ELSE IF LIGHT ENTER 3
IF OTHER THAN THESE THEN ENTER 4 ===> &WHOOS2
GET SECONDARY ON-SITE CONTACT INFORMATION;
\begin{tabular}{lllll} 
SECOND CONTACT NAME & \&OSNAM2 \\
SECOND CONTACT BUSINESS: & \&OSBUSNM2 & \\
SECOND CONTACT PHONE: & \((\) \&OSAC2 \()\) \&OSPRE2 - \&OSLAST2 EXT: \&OSEXT2 \\
SECOND CONTACT TITLE: & \&OSTITN2 \\
& & \(1=\) President/Owner & \\
& & \(2=\) Senior Manager
\end{tabular}
```

Participant Telephone Survey D-42 1994 PG\&E Lighting Evaluation

```
3 = Financial Manager
4 = Energy Manager
5 = Operations Manager
6 = Building Manager
7 = Other SPECIFY: &OSTIL2OT
```

```
COMMENTS: &OSCOM21
COMMENTS: &OSCOM22
        ENTER 1 TO SKIP FORWARD ==> &SKIP
    IF YOU WISH TO SCHEDULE AN APPOINTMENT WITH THE PERSON ON THE PHONE
    ENTER 1, ELSE READ BELOW THEN ENTER 2 AND CODE OS RESULT;
    ===> &SKIP
    Those are all of the questions I have for you at this time.
    I will contact &OSNAME____ to schedule
    the on-site audit. On behalf of PG&E, thank you for your time
    and cooperation.
    At this time, we would like to schedule an appointment for one of
    our representatives to meet with you at your facility to
    conduct the survey and inspect the building's new lighting
equipment.
        OSO20. Can we schedule a time now for one of our representatives
        to meet with you at your facility?
        &OS020 1 = Yes --> SKIP OS030
                            O = No
                        = (Refused)
                        9 = (Don't Know)
    OS030. How high off the floor is the highest lighting which was
        retrofitted under the program?
        &OS030 feet (ENTER ESTMATED LIGHTING HEIGHT)
                888 = (Refused)
                999 = (Don't Know)
    OS040. Do you have ladders at the facility high enough to reach
        this height, which could be available to the auditor?
        &OS040 1 = Yes
            O = No
            = (Refused)
            9 = (Don't Know)
```

OSO45. What is the closest cross street to the facility at \&ADDRESS Cross Street: \&XSTREET

ENTER 1 TO SKIP FORWARD: \&SKIP

Appendix E

FINAL NONPARTICIPANTS TELEPHONE SURVEY

\&	
	Latest Interviewer
	ACCNT \#: \&ACCOUNT
	MEASTYP: \&MEASTYP
	Control: \&CONTROL
	Business Name \&BUSINESS
	Name: \&NAME2
	Address: \&ADDRESS
	City: \&CITY
	Callback Date: \&CBD
	Comment: \&COMMENT1
	Res1: \&R1 Res2
	1 =Complete-CB OS 6=Refusal
	2=Partial/Refusd 7
	3=Call Back 8
	$4=$ No Answr 9
	5=On Vacation

CONTACT INFO:
\&CONIFO1
\&CONIFO2
\&CONIFO3
\&CONIFO4
\&CONIFO5
\&CONIFO6
\&CONIFO7
\&CONIFO8
CONTACT INFO SCREEN:

ENTER PERSON ATTEMPTING TO CONTACT: \&RESP
1 = Initial attempt to find contact
2 = Decision maker
3 = Technical
$4=$ Lighting
5 = Property Manager
PARTICIPATION CONTACT \&DNAME
(\&DAC) \&DPRE - \&DLAST Ext. \&DEXT
CALLBACK DATE \&DCBD__ CALLBACK TIME \&DCBT__ Def: \&DDEF_
FIRM: \&DBUSNAM (1=def callback 0=general)
\&NOTED1
\&NOTED2
\&NOTED3
\&NOTED4
\&NOTED5
TECHNICAL CONTACT \&TNAME
(\&TAC) \&TPRE - \&TLAST
CALLBACK DATE \&TCBD___
FIRM \&TBUSNAM
Ext. \&TEXT
CALLBACK TIME \&TCBT_ Def \&TDEF_
\&NOTET1
\&NOTET2
\&NOTET3
\&NOTET4
\&NOTET5
ALWAYS ENTER 1 TO SKIP FORWARD ====> \&SKIP
PROPERTY MANAGEMENT CONTACT \&PMNAME
(\&PAC) \&PPRE - \&PLAST Ext. \&PMEXT
CALLBACK DATE \&PMCBD__ CALLBACK TIME \&PMCBT__ Def \&PMDEF_
Nonparticipant Telephone Survey E-1 1994 PG\&E Lighting Evaluation

FIRM: \&PMBUSNAM
(1=Def callback 0=general)
\&NOTEPM1
\&NOTEPM2
\&NOTEPM3
\&NOTEPM4
\&NOTEPM5

LIGHTING CONTACT \& LNAME	
(\&LAC) \&LPRE - \&LLAST	Ext. \&LEXT
CALLBACK DATE \&LCBD__	CALLBACK TIME \&LCBT Def \&LDEF_
FIRM: \&LBUSNAM	(1=Def callback $0=$ general)
\&NOTEL1	
\&NOTEL2	
\&NOTEL3	
\&NOTEL4	
\&NOTEL5	
ALWAYS ENTER 1 TO SKIP FOR	NARD ===> \&SKIP

Hello. This is \&LI__ I'm with Quantum Consulting, a management consulting firm in Berkeley, California. We're assisting PG\&E in evaluating its (Customized Incentives / Retrofit Express) Program. Although you are not participating in this program, we'd like to ask you some general questions about your firm's energy related decisions, and we'd like to collect some specific technical information on your major electricity end uses.

MN001. Before we start, I would like to inform you that for quality control purposes, this call may be monitored by my supervisor. Would this be OK with you?
\&MN001 $1=$ Yes
$0=\mathrm{No}$
8 = (Refused)
$9=$ (Don't Know)

DECISION MAKER: IF RESPOND = . OR D THEN ASK: RESPOND = \&RESPOND This survey will cover the facility at \&ADDRESS__ ?

SCOO1d. Does your firm own the building at \&ADDRESS2__ ? \&SC001D
1 = Yes $\quad 8=$ (Refused)
$0=$ No --> SKIP FIOO2 9 = (Don't Know)
FIOO1d. Does your firm occupy the space at \&ADDRESS3 ?
\&FIOO1D 1 = Yes --> SKIP FIOO3
0 = No --> SKIP SC016
$8=($ Refused $) \quad-->$ SKIP FI003
9 = (Don't Know)--> SKIP FIOO3
FIOO2d. Does your firm manage the property at \&ADDRESS4 ? \&FIOO2D $1=$ Yes --> SKIP FIOO4

0 = No --> SKIP FIOO3
8 = (Refused) --> SKIP FI004
$9=$ (Don't Know) --> SKIP FIOO4

TECHNICAL: ASK WHERE RESPOND = T: RESPOND = \&RESPOND This survey will cover the facility \&ADDRESS \qquad .

SC001T. Do you own the building at \&ADDRESS2 \qquad ? \&SC001T
1 = Yes $8=$ (Refused)
Nonparticipant Telephone Survey E-2 1994 PG\&E Lighting Evaluation

0 = No --> SKIP FIOO2t 9 = (Don't Know)
FIOO1T. Does your firm occupy the space at \&ADDRESS3 ?
\&FI001T $1=$ Yes $-->$ SKIP SC005
0 = No --> SKIP SC016
8 = (Refused) --> SKIP SC005
$9=$ (Don't Know) --> SKIP SC005
FIOO2T. Does your firm manage the property at \&ADDRESS 4 \qquad ?
\&FI002T $1=$ Yes $->$ SKIP FI003
$0=$ No --> SKIP SCOO5
8 = (Refused) --> SKIP SC005
$9=$ (Don't Know) --> SKIP SC005
LIGHTING: ASK WHERE RESPOND = L: RESPOND = \&RESPOND
This survey will cover equipment installed at \&ADDRESS \qquad .

SCOO1L. Do you own the building at \&ADDRESS2__ ? \&SC001L
1 = Yes $\quad 8=$ (Refused)
0 = No --> SKIP FIOO2l $9=$ (Don't Know)
FIOO1L. Does your firm occupy the space at
\&ADDRESS 3 \qquad ?
\&FIOO1L $1=$ Yes $-->$ SKIP SC006
$0=$ No --> SKIP SC016
$8=$ (Refused) $\quad-->$ SKIP SC006
$9=$ (Don't Know) --> SKIP SC006
FIOO2L. Does your firm manage the property at \&ADDRESS4 \qquad ?
\&FIOO2L $1=$ Yes -->SC006
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)

ASK ONCE:

SC016. Is there a property management firm for this building? \&SC016
$1=$ Yes
0 = No --> SKIP SC003/SC005/SC006
8 = (Refused) --> SKIP SC003/SC005/SC006
$9=($ Don't Know) --> SKIP SC003/SC005/SC006

SC017.- Could you please give me the name and telephone SC024. number of someone at the property management firm who would be able to answer questions about the building and electrical equipment at the premise?

PROPERTY CONTACT NAME:	\&PMNAME	
PROPERTY CONTACT COMPANY:	\&PMBUSNAM	
PROPERTY CONTACT PHONE: ((\&PMAC) \&PMPRE - \&PMLAST_	Extension: \&PMEXT
PROPERTY CONTACT TITLE:	\&PMTITLN	
	1 = President/Owner	
	2 = Senior Manager	
	3 = Financial Manager	
	4 = Energy Manager	
	5 = Operations Manager	
	6 = Building Manager	
	7 = Other SPECIFY: \&PMTILO	

Comment1 \&PMCOM1
Comment2 \&PMCOM2 ENTER 1 TO SKIP FORWARD ====> \&SKIP

FIOO3. Are you the sole occupant of the building? \&FIO03 1 = Yes $8=$ (Refused) $0=$ No $\quad 9=$ (Don't Know)

FIOO4. Is any part of \&ADDRESS_leased space? \&FI004 $1=$ Yes $8=$ (Refused) $0=$ No $\quad 9=$ (Don't Know)

SC003. This survey will cover the equipment installed at \&ADDRESS2_. Are you the best person to talk to about \&BUSINESS__ 's energy related decisions. These questions cover such topics as awareness of PG\&E programs and energy-efficiency improvements.
\&SC003 1 = Yes-->SKIP TO SC005 $8=$ (Refused) $0=$ No $\quad 9=$ (Don't Know)

SC004. Who would be the best person to talk to about \&BUSINESS__ energy related decisions?

ENERGY DECISIONS NAME: \&DNAME
ENERGY DECISIONS PHONE (\&DAC) \&DPRE - \&DLAST Ext. \&DEXT_
ENERGY DECISIONS ORGANIZATION NAME \&DBUSNAM
ENERGY DECISIONS CONTACT TITLE \&DTITLN
1 = President/Owner
2 = Senior Manager
3 = Financial Manager
4 = Energy Manager
5 = Operations Manger
6 = Building Manger
7 = Other SPECIFY: \&DTITLOTR \qquad
Comment1 \&DCOMM1
Comment2 \&DCOMM2
ENTER 1 TO SKIP ===> \&SKIP

ASK SC005 IF SC016~=1:
SC005. Are you the best person to answer questions about the size of the facility, and the type size and age of your major electrical equipment?
\&SC005 $1=$ Yes --> SKIP SC006
$0=\mathrm{No}$
8 = (Refused) --> SKIP SC006
$9=$ (Don't Know) --> SKIP SC006
SC007. Who would be the best person to talk to about \&BUSINESS__ 's major electricity end uses?
LIGHT CONTACT NAME \&LNAME
LIGHT CONTACT PHONE (\&LAC_) \&LPRE__ - \&LLAST__ Ext. \&LEXT_
LIGHT ORGANIZATION NAME \&LBUSNAM
LIGHT CONTACT TITLE \<ITLF
IF NOT LIGHT CONT ENTER 1 AND GET NEW TECH CONTACT, ELSE IF LIGHT ENTER 2
===> \&WHOTECH
TECHNICAL CONTACT NAME \&TNAME
TECHNICAL CONTACT PHONE (\&TAC_) \&TPRE__ - \&TLAST__ Ext. \&TEXT_
TECHNICAL ORGANIZATION NAME \&TBUSNAM
TECHNICAL CONTACT TITLE \&TTITLN
1 = President/Owner $\quad 5$ = Opertions Manager
2 = Senior Manager 6 = Building Manager
3 = Financial Manager 7 = Other SPECIFY:
4 = Energy Manager \&TTITLOTR
Comment1: \&TCOMM1
Comment2: \&TCOMM2
ENTER 1 TO SKIP FORWARD ==> \&SKIP
ASK IF SC001~=1:
SC006. Are you the best person who can answer questions about the hours of lighting equipment operation at \&ADDRESS \qquad ? \&SC006 $1=$ Yes --> SKIP SC010

0 = No --> SKIP SC008
8 = (Refused) --> SKIP SC010
$9=$ (Don't Know) --> SKIP SC010
SC008. Who would be the best person on site to talk to about \&BUSINESS__ 's hours of lighting operation?

DECIS CONTACT NAME \&DNAME
DECIS CONTACT PHONE (\&DAC_) \&DPRE_ - \&DLAST___ Ext. \&DEXT___
DECIS ORGANIZATION NAME \&DBUSNAM
DECIS CONTACT TITLE \&DTITLF \qquad
TECH CONTACT NAME \&TNAME
TECH CONTACT PHONE (\&TAC_) \&TPRE_ - \&TLAST___ Ext. \&TEXT
TECH ORGANIZATION NAME \&TBUSNAM
TECH CONTACT TITLE \&TTITLF \qquad

IF DECIS CONTACT ENTER 1, IF TECH CONTACT ENTER 2 ELSE ENTER 3 AND GET NEW INFO ===> \&WHOLIT

ENTER NEW LIGHTING CONTACT INFORMATION:
HOURS CONTACT NAME: \&LNAME Nonparticipant Telephone Survey E-5 1994 PG\&E Lighting Evaluation

HOURS CONTACT PHONE: (\&LAC_) \&LPRE_ - \&LLAST
HOURS ORGANIZATION NAME: \&LBUSNAM
HOURS CONTACT TITLE \<ITLN
1 = President/Ownwer
2 = Senior Manager
3 = FInancial Manager
4 = Energy Manager
5 = Operations Manager
6 = Building Manager
7 = Other SPECIFY: \<ITLOTR

Comment1: \&LCOMM1
Comment2: \&LCOMM2 ENTER 1 TO SKIP ===> \&SKIP

SC020. Pacific Gas and Electric's Customized Incentives and Retrofit Express Programs provide rebates to encourage customers to convert their standard lighting systems to more efficient. Do you recall \&BUSINESS \qquad having lighting installed as part of PG\&E's program? \&SCO20__ $1=$ Yes -->THANK AND TERMINATE
$0=\mathrm{No}$
8 = (Refused) --> THANK AND TERMINATE
$9=$ (Don't Know) --> THANK AND TERMINATE

SCO21. Was your lighing installed through the program before or after January of 1992?
\&SC021__ 1 = Before January 1992 $0=$ After January 1992 -->THANK AND TERMINATE $8=$ (Refused) -->THANK AND TERMINATE $9=$ (Don't Know) -->THANK AND TERMINATE

IL010. Since January 1992, have you made any changes in indoor lighting at your facility other than routine replacement of burned out bulbs? \&IL010 1 = Yes $8=$ (Refused) $-->$ SKIP TO FI005 $0=$ No--->SKIP TO FIO05 $9=$ (Don't Know)-->SKIP TO FI005

IL020. In what months and years did you make these changes? (ENTER MONTH/YEAR)
\&ILO20__ MONYYYY (e.g. JUN1960)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR ENTER 1 TO SKIP
IL021. \&IL021 YYYY (8 = Refused 9 = Don't Know)

SECOND MONTH AND YEAR, IF APPLICABLE:
(ENTER MONTH/YEAR) \&ILO25__ MONYYYY

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR ENTER 1 TO SKIP IL026. \&IL026 YYYY ($8=$ Refused 9 = Don't Know)

ENTER '1' TO SKIP FORWARD ===> \&SKIP

IL040. What type and how many fixtures were affected?
(READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES ADDED OR REMOVED, IF NONE THEN 0)
$888=$ (Refused) $999=$ (Don't Know)
(0 = NO CHNG)
(1 = ADDED) NUMBER
Nonparticipant Telephone Survey E-6 1994 PG\&E Lighting Evaluation

(2 = REMOVED)			
IL040.	\&IL040	\&IL040N	4 Foot T8 fluorescent
IL041.	\& IL041	\&IL041N	8 Foot T8 fluorescent
IL042.	\& IL0 42	\& IL0 42N	4 Foot Energy saver fluorescent
IL043.	\&IL043	\&IL043N	8 Foot Energy saver fluorescent
IL044.	\&IL044	\&IL044N	4 Foot T12 fluorescent
IL045.	\&IL045	\&IL045N	8 Foot T12 fluorescent
IL046.	\&IL046	\&IL046N	Incandescent
IL047.	\& IL047	\&IL047N	Compact Fluorescent
IL048.	\& IL048	\&IL048N	High pressure sodium
IL049.	\& IL049	\&IL049N	Metal Halide
CONTINUED, ENTER 1 TO MOVE FORWARD ===> \&SKIP			


```
            0 = NO --> SKIP TO FI040
            8 = (Refused) --> SKIP TO FIO40
            9 = (Don't Know) --> SKIP TO FI040
FIO25. How many other firms occupy space in the building?
        &FIO25 Number of firms 888 = (Refused)
                        999 = (Don't Know)
FIO40. Which of the following descriptions best characterizes your
        firm's organizational structure?
        &FI040
            1 = Chain or multifacility (owned or managed by a
                parent corporation operating other locations)
            2 = Franchise (owns a branch or subsidiary) -->
                                    SKIP TO FI050
            3 = Independent-->SKIP TO FIO50
            8 = (Refused) --> SKIP TO FI050
            9 = (Don't Know) --> SKIP TO FI050
FIO45. What is the name of your parent company?
        &FIO45
FIO50. What is the legal tax status of your firm, that is what is
    your tax status for federal tax reporting purposes?
    &FI050
    1 = Proprietary or investor-owned, (i.e. a for-profit organization)
    2 = Public: federal, state or municipal agency
    3 = 501(c3): Private, nonprofit
    8 = (Refused)
    9 = (Don't Know)
```


DECISION MAKER:

FI060. Where are decisions regarding energy-related investments for \&BUSINESS \qquad made?
\&FIO60
$1=$ Made locally, on site
2 = Made at regional head office
3 = Made at national head office
4 = Made at international head office
5 = Made by PM firm/building owner
6 = Other FIO62.
Specify: \&FI062
$8=$ (Refused)
$9=$ (Don't Know)

EI010. Approximately how many people are currently employed at the facility, including both full- and part-time employees? \&EIO10 Number of Employees $888=$ (Refused) $999=$ (Don't Know)

EI020. Since January 1992, has the number of people employed at this facility changed? \&EIO20 $1=$ Yes 0 = No--->SKIP TO FI080 8 = (Refused) --->SKIP TO FI080 $9=$ (Don't Know) --->SKIP TO FIO80

EI030. In what month and year did this change in the number of employees occur? (ENTER MONTH/YEAR) \&EIO30 \qquad MONYYYY

IF DON'T KNOW ASK FOR BEST GUESS OR YEAR:
EI031. \&EIO31__ YYYY $8=$ (Refused) 9 (Don't Know)
EIO40. Approximately how many people were employed at this facility before the change occurred, including both full and part-time employees? \&EI040 Number of Employees 777 = Seasonal Workforce --> ENTER COMMENTS BELOW 888 = (Refused) 999 = (Don't Know)
\&EIO 41
\&EI042
\&EI043
ENTER 1 TO SKIP FORWARD --> \&SKIP
IF LEASE=1 THEN ASK; ELSE SKIP TO EIO10: LEASE = \&L
FIO80. Do the tenants at \&ADDRESS \qquad pay all, none, or a portion of their electric utilities through their lease? \&FI080

1 = ALL utilities INCLUDED in lease --> SKIP TO FI110
2 = Pay some utilities through lease and others directly to PG\&E
3 = Pays ALL utilities directly to PG\&E--> SKIP FI110
$8=$ (Refused) --> SKIP FI110
$9=$ (Don't Know) $-->$ SKIP FI110
IF (LEASE=1 AND FI080 = 2) : LEASE = \&L FI080 = \&FI080
FIO90- Which of the following utilities are paid for through the
FI100. lease? (ENTER '1' FOR ALL THAT APPLY)
$8=$ (Refused)
$9=$ (Don't Know)

| \&FI090 | Indoor Lighting | \&FI095 |
| :--- | :--- | :--- | Outdoor Lighting

FI120. Is this the current tenant's first lease at this address?
\&FI120 $\quad 1$ = Yes $8=$ (Refused)
$0=$ No $\quad 9=$ (Don't Know)

IS001. Do you have a lighting contractor that you regularly use/rely on? \&IS001 $1=$ Yes
Nonparticipant Telephone Survey E-9 1994 PG\&E Lighting Evaluation

```
0 = No SKIP --> SKIP AW005
8 = (Refused) --> SKIP AW005
9 (Don't Know) --> SKIP AW005
IS002. Did the contractor that you use/rely on tell you about the Retrofit Lighting Program?
\&ISOO2 1 = Yes \(8=\) (Refused)
\(0=\) No \(\quad 9=\) (Don't Know)
AWOO5. Have you heard of PG\&E's Customized Lighting or Retrofit Express Express Programs?
\&AW005 \(1=\) Yes
0 = No -->SKIP TO PP010
8 = (Refused) -->SKIP TO PP010
\(9=\) (Don't Know) -->SKIP TO PP010
AW010. When did you first become aware of PG\&E's Customized Incentives or Retrofit Express Programs? \&AW010 MONYYYY (i.e. JUN1960)
IF DON'T KNOW MONTH AND YEAR, ASK FOR BEST GUESS YEAR AND CODE BELOW:
\&AW011 YYYY \(8=\) (Refused)
\(9=\) (Don't Know)
ASK IF RETRO=1 AND AW011=REFUSED OR DON'T KNOW; ELSE SKIP TO IS010:
AW015. Did you find out about the Retrofit Express Program BEFORE or AFTER you made the decision to purchase your new lighting?
\&AW015 1 = Before Purchase Decision
\(0=\) After Purchase Decision
8 = (Refused)
\(9=\) (Don't Know)
ASK IF ISOO2~=1; ELSE SKIP TO PP010:
IS010. How did you FIRST learn about the Retrofit Lighting Program \&ISO10 (DO NOT READ) CUSTOMER APPROACHED SOMEONE:
1 = Respondent approached vendor/contractor
2 = Respondent approached PG\&E concerning another matter and found out about program
SOMEONE APPROACHED THE CUSTOMER:
3 = Contacted by PG\&E account rep
4 = Contacted by lighting contractor
5 = Contacted by electrical contractor
6 = PG\&E Brochure in mail
7 = Bill Insert
8 = Word of mouth from friends or co-workers within the organization
9 = Word of mouth from friends or other business people outside of company
10 = Television, Radio, Newspaper ad
11 = Other SPECIFY: IS020. \&IS020 \(88=\) (Refused) \(99=\) (Don't Know)
PP010. Has your firm participated in any PG\&E sponsored energy conservation programs? \&PP010
1 = Yes
0 = No--->SKIP TO PD010/TR030
2 = Not aware of other programs--->SKIP TO PD010/TR030
Nonparticipant Telephone Survey E-10 1994 PG\&E Lighting Evaluation
```

```
8 = (Refused)--->SKIP TO PD010/TR030
9 = (Don't Know)--->SKIP TO PD010/TR030
```

PP020. In what year did you participate in the program(s)? (ENTER YEAR)
\&PP020__ YYYY $8=$ (Refused)
9 = (Don't Know)
ASK IF RETRO=1; ELSE SKIP TO TR030:
PD010. When you were making your decision to purchase new lighting equipment, what was the most important factor in your decision to the new lighting? (READ CATEGORIES IF NECESSARY) \&PD010 1 = Acquiring the latest technology

2 = Saving money on electric bills
$4=$ Replacing old or broken equipment
6 = Improving the quality of light for employees and customers
$7=$ Helping to protect the environment
9 = Obtaining advice from another branch of your firm
10 = Obtaining advice from PG\&E account rep
$11=$ Obtaining advice from contractors
12 = Other SPECIFY: PD011: \&PD011
$88=$ (Refused)
$99=$ (Don't Know)
ASK IF RETRO=1, AND AWARE OF PROGRAM PRIOR TO RETROFIT:
FR100. Why did you choose to purchase your equipment outside of the program? (DO NOT READ LIST: ENTER 1 IF APPLIES, 0 IF NOT) FR100. \&FR100 Lack of money to invest in it. FR101. \&FR101 Payback/return on investment not attractive enough. FR102. \&FR102 Concerned that it might not save as much as claimed FR103. \&FR103 Didn't know enough about EE lighting before FR104. \&FR104 Didn't know where/how to obtain EE lighting. FR105. \&FR105 Hadn't had time.
FR106. \&FR106 Concerned about light quality/brightness
FR107. \&FR107 Tenants didn't want a change
FR108. \&FR108 Decision made elsewhere
FR109. \&FR109 Was planning to install when heard about program
FR110. \&FR110 Program participation seemed like to much of a hassle
FR114. \&FR114 Other1 SPECIFY: FR115 \&FR115
FR116. \&FR116 (Refused)
FR117. \&FR117 (Don't Know)
FR011. How many estimates or quotes did you obtain before purchasing your new equipment? \&FR011 Estimates $888=$ (Refused)

999 = (Don't Know)

FR012. Did you obtain estimates for both high efficiency and standard efficiency lighting equipment?
\&FR012 $\quad 1=$ Both standard and high efficiency
$2=$ Standard efficiency only
3 = High efficiency only
$8=$ (Refused)
$9=$ (Don't Know)
FR014. How many people were involved in the decision to install your new lighting?
\&FR014 People $888=$ (Refused)
$999=$ (Don't Know)

FR015. Were you the person who made the final decision? \&FR015

1 = Yes --> SKIP FR017
$0=\mathrm{No}$
8 = (Refused)--> SKIP FR017
$9=$ (Don't Know) --> SKIP FR017

FR016. What is the job title of the person who made the final decision? \&FR016 \qquad Title

ASK IF LEASE=1 Lease $=\& L:$
FIO65. How active a role do tenants take in making equipment purchase decisions for the property at \&ADDRESS \qquad ? \&FI065
$1=$ Very active: they are involved in every aspect of the purchase and you possess veto power
2 = Somewhat active: they approve all decisions
3 = Slight role: they have a voice but it's a single vote among many
4 = None
$8=$ (Refused)
$9=$ (Don't Know)
TR030. Would you consider a retrofit of your \&TYPE__ lighting with T-8 high efficiency equipment if PG\&E offered financing at 1 percentage point below the prime rate? \&TR030

1 = Yes--->SKIP TO TR070
$0=\mathrm{NO}$
$8=$ (Refused)
$9=$ (Don't Know)
ASK IF TR030~=1:
TR040. What if the interest rate were 1.5 percentage points below the prime rate? \&TR040
$1=$ Yes
$0=\mathrm{NO}$
$8=$ (Refused)
$9=$ (Don't Know)

TR050. What if $P G \& E$ offered a rebate of $\$ 15$ per fixture, and financing at 1 percentage point below the prime rate? \&TR050
$1=$ Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
IF TR040=1 or TR050=1 THEN SKIP TO TR070
TR070. What you consider a retrofit of your current lighting with $T-8$ high-efficiency fluorescent fixtures if PG\&E offered rebates of \$15 per fixture, but conducted an on-site audit of the facility, and provided you with detailed engineering analyses and recommendations? \&TR070

$$
\begin{aligned}
& 1=\text { Yes } \\
& 0=\text { No } \\
& 8=\text { (Refused) } \\
& 9=\text { (Don't Know) }
\end{aligned}
$$

FUTURE SERVICES:
PG\&E is currently planning on offering some new services to its commercial and industrial customers...

PR020. Would you be interested in having PG\&E operate or maintain the lighting equipment at the facility?
(i.e. routine replacement of burned out bulbs)
\&PR020
$1=$ Yes
$0=\mathrm{No}$
2 = Depends on price
$8=$ (Refused)
$9=$ (Don't Know)
PRO40. Would you be interested in having all of the building's systems checked out to ensure proper operation and efficient use of energy? (i.e. building recommissioning)
\&PR040 $1=$ Yes
$0=\mathrm{No}$
8 = (Refused)
$9=$ (Don't Know)
PR060. Would you be interested in having PG\&E help you with any future equipment selection? \&PR0 60
$1=$ Yes
$0=\mathrm{No}$
$8=$ (Refused)
$9=$ (Don't Know)
PR001- How frequently do you have contact with your PG\&E account rep?
PR002. (CODE NUMBER OF TIMES AND PERIOD IT IS IN)
\&PR001 Times
\&PR002 Time Period --> IF NOT 0 SKIP PR090
$0=$ Never
1 = Day
2 = Week
3 = Month
4 = Year
$8=$ (Refused)
$9=$ (Don't Know)
PR005. Does someone else in the firm have contact with your PG\&E rep? \&PR005 1 = Yes
$0=$ No --> SKIP PR090
Nonparticipant Telephone Survey E-13 1994 PG\&E Lighting Evaluation

```
    8 = (Refused)--> SKIP PR090
    9 = (Don't Know) --> SKIP PR090
PR010- How often does this person have contact with your PG&E
PR011. account rep?
    &PR010 Times --> IF 0, 8, 9 SKIP PR090
    &PR011 Time Period
                            0 = Never
                            1 = Day
            2 = Week
            3 = Month
            4 = Year
            8 = (Refused)
            9 = (Don't Know)
PR015. What is the name, title, and phone number of this person?
    &REPNAME_ Name
    &REPTITLE__Title
    ( &RAC ) &RPRE - &RLAST Ext &REPEXT Phone
    ENTER 1 TO SKIP FORWARD ===> &SKIP
PR090. Are there any additional services you would like to see PG&E
    provide?
        (ENTER 1 FOR ALL THAT APPLY)
            8 = (Refused)
            9 = (Don't Know)
    &PR090 other SPECIFY: &PR091
    &PR092 other SPECIFY: &PR093
    &PR094 other SPECIFY: &PR095
ENTER 1 TO SKIP FORWARD ===> &SKIP
DC010. Which of the following financial criteria do you consider when
        evaluating lighting investments?
        (READ LIST; ENTER 1 FOR ALL THAT APPLY; ELSE ENTER 0)
                        8 = (Refused)
        9 = (Don't Know)
DC010. &DC010 Payback
DC011. &DC011 Internal Rate of Return
DC012. &DC012 Net Present Value
DC013. &DC013 Other SPECIFY: DC014. &DC014
```

```
IF DC010=1 THEN ASK DC020
DC020. What is the payback period you require?
        &DC020
            1 = 1 year or less
                    2 = 2 years or less
                    3 = 3 years or less
                    4 = 4 years or less
                    5 = 5 years or less
                    6 = 6 years or less
                    7 = 7 years or less
                    8 = 8 years or less
                    9 = 9 years or less
                    10 = 10 years or less
                    11 = Other SPECIFY: DC021. &DC021
                    88 = (Refused)
                    99 = (Don't Know)
IF DC011=1 THEN ASK DC030:
DC030. What is your organization's required internal rate of
    return?
    &DC030 Percent 888 = (Refused)
                                    999 = (Don't Know)
IF DC012=1 THEN ASK DC040:
DC040. What is the discount rate you use when determining the net present value of an investment?
\&DC040 Percent 888 = (Refused)
\(999=\) (Don't Know)
ASK ALL:
DC050. Do you use a different \&CRITERIA
``` \(\qquad\)
``` for evaluating energy efficient equipment purchases than you use for general investments?
\(\& D C 050 \quad 1=\) Yes
0 = No --> SKIP BC021
8 = (Refused) --> SKIP BC021
\(9=\) (Don't Know) --> SKIP BC021
ASK DC051 IF DC010=1 OR DC011=1 OR DC012=1; ELSE SKIP BC021:
DC051. Is the \&CRITERI2_ you use for energy efficent purchases \&TYPE1 or \&TYPE2_ than that which you use for other general investments? \&DC051 1 = Higher/Shorter
        2 = Lower/Longer
        8 = (Refused)
        9 = (Don't Know)
BC021. Are any other locations of your business participating in the Customized Incentives or Retrofit Express Programs? \&BC021 1 = Yes \(8=\) (Refused)
\(0=\) No \(\quad 9=\) (Don't Know)
BCO22. How many of your other locations are participating in the Customized Incentives or Retrofit Express Programs? \& BC022 Locations \(888=\) (Refused) 999 = (Don't Know)
```

FUTURE PLANS:

FR070. Are you currently planning on making any lighting retrofits within the next two years?
\&FR070 $1=$ Yes
0 = No --> SKIP PR020
8 = (Refused) --> SKIP PR020
$9=$ (Don't Know) --> SKIP PR020
FR075. Will the new lighting be high or standard efficiency? \&FR075

1 = High efficiency
$0=$ Standard efficiency
$8=$ (Refused)
9 = Don't Know)

FR077. Are you planning to make this change through one of PG\&E's Retrofit programs? \&FR077

$$
\begin{aligned}
& 1=\text { Yes } \\
& 0=\text { No } \\
& 8=\text { (Refused) } \\
& 9=\text { (Don't Know) }
\end{aligned}
$$

FR080. What type and how many fixtures are you planning to install? (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES TO BE CHANGED; IF NONE THEN ENTER 0) $888=$ (Refused) 999 (Don't Know) (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES TO BE ADDED)

FR080.	\&FR080	4 Foot T8 fluorescent
FR081.	\&FR081	8 Foot T8 fluorescent
FR082.	\&FR082	4 Foot Energy saver fluorescent
FR083.	\&FR083	8 Foot Energy saver fluorescent
FR084.	\&FR084	4 Foot T12 fluorescent
FR085.	\&FR085	8 Foot T12 fluorescent
FR086.	\&FR086	Incandescent
FR087.	\&FR087	Compact Fluorescent
FR088.	\&FR088	High pressure sodium
FR089.	\&FR089	Electronic Ballasts
FR090.	\&FR090	Magnetic Ballasts
FR091.	\&FR091	Metal Halide

CONTINUED ===> ENTER 1 TO SKIP ===> \&SKIP
ENTER TYPE AND NUMBER OF FIXTURES PLANNING TO ADD:
IF NONE ENTER 0

$$
\begin{aligned}
& 888=\text { (Refused) } \\
& 999=\text { (Don't Know) }
\end{aligned}
$$

FR092. \&FR092 Mercury Vapor
FR093. \&FR093 Quartz
FR094. \&FR094 Reflectors (w/Delamping)
FR095 \&FR095 LED Exit Lighting
FR096 \&FR096 Watt Saver/Power Choke Devices FR097. \&FR097 Other SPECIFY: FR098. \&FR098 FR099r. \&FR099R (Refused) FR099d. \&FR099D (Don't Know)

ENTER 1 TO SKIP FORWARD ===> \&SKIP

The following questions refer to your "FACILITY," which means ALL
the buildings and tenants SERVICED BY PG\&E UNDER THE FOLLOWING Nonparticipant Telephone Survey E-16 1994 PG\&E Lighting Evaluation

```
    BILLING NAME: &BUSINESS
```

\qquad

```
                            ADDRESS: &ADDRESS
    ACCOUNT #: &ACCOUNT
    BC011. What is the main business ACTIVITY at the facility?
        &BC011
        1 = Office 88 = (Refused)
        2 = Retail (non-food) 99 = (Don't Know)
        3 = Manufacturing/Assembly
        4 = Warehouse
        5 = Restaurant
        6 = Grocery Store
        7 = School
        8 = Hotel or Motel
        9 = Hospital
        10 = College/University
        11 = Health Care
        12 = Municipality
        13 = Industrial Process
        14 = Other SPECIFY: BC012 &BC012
    FC110. Since January 1992, has the square footage covered by
        account # &ACCOUNT_ increased, decreased, or
        stayed the same?
        &FC110 1 = Increased floor space
            2 = Decreased floor space
            3 = Stayed the same-->SKIP TO FR033
            8 = (Refused)-->SKIP TO FR033
            9 = (Don't Know)-->SKIP TO FR033
FC120. What is the approximate area, in square feet, of this
    change?
    &FC120 Square Feet 8 = (Refused)
                            9 = (Don't Know)
FC130. In what month and year did this change in floor space occur?
        (ENTER MONTH/YEAR)
    &FC130__ MONYYYY
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR:
FC131. &FC131 YYYY (8 = Refused 9 = Don't Know)
IF FC110=1; ELSE SKIP TO BH010
FC140. In what month and year was this additional floor space occupied? (ENTER MONTH/YEAR)
    &FC140__ MONYYYY
    IF DOESN'T KNOW, ASK FOR BEST GUESS, AND/OR YEAR:
FC141. &FC141 YYYY (8 = Refused 9 = Don't Know)
ASK WHERE FC110 IS NOT 1:
FR033. When was your last major space remodel?
        (ENTER MONTH/YEAR)
        &FR033__ MONYYYY (e.g. JUN1960)
```

IF DON'T KNOW ASK FOR BEST GUESS AND/OR YEAR:
FR034. \&FR034 YYYY $7=$ Never Remodeled
$8=$ (Refused)
$9=$ (Don't Know)
IF 7, 8, or 9 THEN --> SKIP BHO10/ILOO1:
FR035. Did this remodel include space covered by the retrofit?
\&FR035 1 = Yes --> SKIP LF001/IL001
0 = No --> SKIP LFOO1/IL001
8 = (Refused) --> SKIP LF001/IL001
$9=($ Don't Know) --> SKIP LF001/IL001
LFOO1- Could you please tell me the facility's \&HOUR \qquad
LF013. hours during the following times, and what percentage of the facility's lights are on at these times?

	$66=$ On 24 Hours					888	(Refused)		
			77	Never O		999	(Don't	Know)	
	Month	Day	Code	Same As	From	AM/PM	To	AM/PM	\% ON
LF001.	DECEMBER	WEEK	\& LF 1	\& E1-	\& LF 1 F	\&LF1M	\& LF 1 T	\& LF 1 N	\& LW1
LF002.	DECEMBER	SAT	\& LF 2	\& E2	\& LF2F_	\&LF2M	\&LF2T_	\&LF2N_	\& LW2_
LF003.	DECEMBER	SUN	\&LF3-	\&E3-	\&LF3F_	\& LF 3M	\& LF 3 T	\&LF3N_	\&LW3_
LFO04.	APRIL	WEEK	\&LF4-	\& $\mathrm{E}^{\text {- }}$	\& LF4F_	\& LF 4M	\&LF4T_	\&LF 4 N_	\&LW4_
LF005.	APRIL	SAT	\&LF5-	\&E5	\& LF5F_	\&LF5M	\&LF5T-	\& LF 5N	\& LW5 -
LF006.	APRIL	SUN	\&LF6-	\&E6-	\& LF $6 \mathrm{~F}_{-}$	\& LF 6M	\&LF6T_	\& LF 6N_	\&LW6_
LF007.	AUGUST	WEEK	\&LF7-	\&E7-	\&LF7F_	\&LF7M	\&LF7T_	\& LF 7 N	\&LW7-
LF008.	AUGUST	SAT	\&LF8	\&E8	\& LF8F_	\&LF8M	\& LF8T	\&LF8N	\&LW8_
LF009.	AUGUST	SUN	\&LF9	\& E9	\& LF 9F	\& LF9M	\& LF 9T	\& LF 9N	\&LW9
LF010.	OCTOBER	WEEK	\&LF10	\&E10	\& LF10F	\&LF10M	\&LF10T	\& LFION	\& LW10
LF011.	OCTOBER	SAT	\& LF11	\& E11	\& LF11F	\&LF11M	\&LF11T	\&LF11N	\& LW11
LF012.	OCTOBER	SUN	\& LF 12	\&E12	\& LF 12 F	\&LF12M	\&LF12T	\& LF 12 N	\& LW12
LF013.	HOLIDAY	ALL	\& LF13	\&E13	\& LF13F	\&LF13M	\&LF13T	\&LF13N	\&LW13

The next questions refer to the facility's conditioned floor space. That is, the areas of the facility that are heated or cooled.

LF015. What percentage of the facility's conditioned floor space is lighted during business hours?
\&LF015 Percent $888=$ (Refused)
999 = (Don't Know)
Now, I'd like to ask about the type of lighting equipment at your facility before you changed your lighting.

SR010. What was the average age of the lighting fixtures
you replaced?
\&SR010 Years $888=$ (Refused)
999 = (Don't Know)
SR100. What is the average age of the existing lighting equipment
at your facility?
\&SR100 Years $888=$ (Refused)
999 = (Don't Know)
ASK WHERE RETRO = 1; ELSE SKIP TO OL010:
LP010. Has any of the lighting equipment that was installed been removed? \&LP010 $1=$ Yes

0 = No--->SKIP TO OL010
8 = (Refused)--->SKIP TO OL010
$9=$ (Don't Know)--->SKIP TO OL010
LP020. In what months and years did you make these changes?
Nonparticipant Telephone Survey E-18 1994 PG\&E Lighting Evaluation

```
    (ENTER MONTH/YEAR)
    &LP020___ MONYYYY
LP021. &LP021 YYYY 8 = Refused 9 = Don't Know
    SECOND MONTH AND YEAR: (ENTER MONTH/YEAR)
    &LP025__ MONYYYY
LP026. &LP026 YYYY 8 = Refused 9 = Don't Know
ENTER 1 TO SKIP FORWARD ===> &SKIP
LP030. What type and how many fixtures were removed?
        (READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES REMOVED,
        IF NONE THEN O)
            888 = (Refused)
                        999 = (Don't Know)
            NUMBER
    LP030. &LP030 4 Foot T8 fluorescent
    LP031. &LP031 8 Foot T8 fluorescent
    LP032. &LP032 4 Foot Energy saver fluorescent
    LP033. &LP033 8 Foot Energy saver fluorescent
    LP034. &LP034 4 Foot T12 fluorescent
    LP035. &LP035 8 Foot T12 fluorescent
    LP036. &LP036 Incandescent
    LP037. &LP037 Compact Fluorescent
    LP038. &LP038 High pressure sodium
    LP039. &LP039 Metal Halide
CONTINUED, ENTER 1 TO SKIP FORWARD ===> &SKIP
ENTER NUMBER OF FIXTURES REMOVED, IF NONE THEN 0
    888=(Refused)
    NUMBER
LP040. &LP040 Mercury Vapor
LP041. &LP041 Quartz
LP042. &LP042 Reflectors (w/Delamping)
LP043. &LP043 Electronic Ballasts
LP044. &LP044 Magnetic Ballasts
LP045 &LP045 LED Exit Lighting
LP046 &LP046 Watt Saver/Power Choke Devices
LP047. &LP047 Other SPECIFY: LP048 &LP048
```

ENTER 1 TO SKIP FORWARD ===> \&SKIP

LP070. What type and how many fixtures replaced the equipment that

was removed? \quad| 888 | $=$ (Refused) |
| ---: | :--- |
| 999 | $=($ Don't Know) |

(READ LIST IF NECESSARY; ENTER NUMBER OF FIXTURES ADDED)
LP070. \&LP070 4 Foot T8 fluorescent
LP071. \&LP071 8 Foot T8 fluorescent
LP072. \&LP072 4 Foot Energy saver fluorescent
LP073. \&LP073 8 Foot Energy saver fluorescent
LP074. \&LP074 4 Foot T12 fluorescent
LP075. \&LP075 8 Foot T12 fluorescent
LP076. \&LP076 Incandescent
LP077. \&LP077 Compact Fluorescent
LP078. \&LP078 High pressure sodium
LP079. \&LP079 Electronic Ballasts
LP080. \&LP080 Magnetic Ballasts
LP081. \&LP081 Metal Halide
CONTINUED, ENTER 1 TO SKIP FORWARD ==> \&SKIP
ENTER TYPE AND NUMBER OD FIXTURE WHICH REPLACED THOSE REMOVED

```
\(0=\) NONE OF THAT TYPE
\(888=\) (Refused)
\(999=\) (Don't Know)
```

NUMBER
LP082. \&LP082 Mercury Vapor LP083. \&LP083 Quartz LP084. \&LP084 Reflectors (W/ Delamping) LP085 \&LP085 LED Exit Lighting LP086 \&LP086 Watt Saver/Power Choke Devices LP087. \&LP087 Other SPECIFY: LP088. \&LP088

ENTER 1 TO SKIP FORWARD ===> \&SKIP
OL010. Is OUTDOOR lighting included on the facility's utility bill? \&OL010
$1=$ Yes
$0=$ No--->SKIP TO CE010
$8=$ (Refused)--->SKIP TO CE010
$9=$ (Don't Know)--->SKIP TO CE010

OL020. Since January 1992, have you made any changes in OUTDOOR lighting at your facility?
\&OL020

$$
\begin{aligned}
& 1=\text { Yes } \\
& 0=\text { No--->SKIP TO CE010 } \\
& 8=\text { (Refused)--->SKIP TO CE010 } \\
& 9=\text { (Don't Know)--->SKIP TO CE010 }
\end{aligned}
$$

OL030. In what month and year did you make these changes?
(ENTER MONTH/YEAR)
\&OLO30_ MONYYYY
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR:
OL031. \&OL031 YYYY $8=$ (Refused)
$9=$ (Don't Know)

OLO40. Did you ADD TO, REPLACE, or REMOVE outdoor lighting?
\&OLO 40
$1=$ Added lighting
Nonparticipant Telephone Survey E-20 1994 PG\&E Lighting Evaluation

```
2 = Replaced lighting
3 = Added AND Replaced lighting
4 = Removed
= (Refused)
9 = (Don't Know)
```

COOLING EQUIPMENT:

The next series of questions pertain to the cooling equipment at
the facility.
CEO10. What type of system is used to air condition this facility?
[If there is more than one system, enter the one used to
cool the largest portion of this facility.]
\& CEO 0
$0=$ No A/C--->SKIP TO CE080
1 = Central plant
$2=$ Small Packaged Systems (i.e. Rooftop or Ground)
$3=$ Wall or window units
4 = Heat pump
5 = Other SPECIFY: CE011 \&CE011
$8=$ (Refused)
$9=$ (Don't Know)
CEO15. What is the primary fuel used to cool your facility?
\&CEO15
$1=$ Electricity
$2=$ Natural Gas
3 = Other SPECIFY: CE016. \&CE016
$8=$ (Refused)
$9=$ (Don't Know)
CE060. During what months is the cooling system operated?
(READ LIST IF NECESSARY; ENTER NUMBER 1 FOR ALL THAT APPLY)
CE059. \&CE059 All Year --> SKIP CE080
CE060. \&CE060 January
CE061. \&CE061 February
CE062. \&CEO62 March
CE063. \&CE063 April
CE064 . \&CE064 May
CE065 . \&CE065 June
CE066. \&CE066 July
CE067. \&CE067 August
CE068. \&CE068 September
CE069. \&CE069 October
CE070. \&CE070 November
CE071. \&CE071 December
CE072 . \&CE072 (Refused)
CE073. \&CE073 (Don't Know)
TO SKIP FORWARD ENTER 1: ===> \&SKIP

CE080. Since January 1992, have you ADDED TO, REMOVED, or REPLACED an older cooling system? \&CE080 $0=$ No Change-->SKIP TO HE015

1 = Added
2 = Replaced
3 = Added and Replaced
4 = Removed
8 = (Refused) -->SKIP TO HE015
$9=$ (Don't Know)-->SKIP TO HE015
CE090. In what month and year did you make these changes? (ENTER MONTH/YEAR)
\&CEO90__ MONYYYY (i.e. JUN1960)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
CE091. \&CE091 YYYY (8 = Refused 9 = Don't Know)

IF CE080=1 THEN SKIP TO CE120; ELSE ASK:
CE110. What fuel was used to power the old system?
\&CE110
1 = Electricity
2 = Natural Gas
3 = Other SPECIFY: CE111. \&CE111
8 = (Refused)
$9=$ (Don't Know)
IF CE080 = 4 THEN SKIP TO HE015
CE120. What fuel does the cooling system addition use?
\& CE120
1 = Electricity
2 = Natural Gas
3 = Other SPECIFY: CE121. \&CE121
8 = (Refused)
$9=$ (Don't Know)

HEATING EQUIPMENT:
HEO15. What is the main type of heating system used to heat your facility? \&HE015 1 = Central electric furnace $19=$ None

2 = Central heat pump 88 = (Refused)
3 = Central gas furnace $99=$ (Don't Know)
4 = Gas boiler
5 = Electric boiler
6 = Fuel oil furnace or boiler
7 = Electric strip heat
8 = Baseboard electric heating
9 = Room or wall AC with electric strip heat
10 = Permanent, non-electric room heaters
11 = Whole-house wall or floor electric furnace
12 = Whole-house wall or floor gas furnace
13 = Portable electric heater
14 = Portable kerosene heater
15 = Wood or coal burning stove or fireplace
16 = Solar collector
17 = Propane heating system
18 = Other HE016. \&HE016 \qquad

HEO20. What is the primary fuel used to heat your facility? \& HE0 20
Nonparticipant Telephone Survey E-22 1994 PG\&E Lighting Evaluation

```
                    1 = Natural Gas
                    2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: HE021 &HE021
8 = (Refused)
9 = (Don't Know)
    HE060. During what months is the heating system operated?
        (READ LIST IF NECESSARY; ENTER NUMBER 1 FOR ALL THAT APPLY)
        HE059. &HE059 All Year ---> SKIP HE080
        HE060. &HE060 January
        HE061. &HE061 February
        HE062. &HE062 March
        HE063. &HE063 April
        HE064. &HEO64 May
        HE065. &HE065 June
        HE066. &HE066 July
        HE067. &HE067 August
        HE068. &HE068 September
        HE069. &HE069 October
        HE070. &HE070 November
        HE071. &HE071 December
        HE072. &HE072 (Refused)
        HE073. &HE073 (Don't Know)
    TO SKIP FORWARD ENTER 1: ==> &SKIP
    HE080. Since January 1992, have you ADDED TO, REPLACED, or REMOVED an
        older heating system?
        &HE080 0 = No Change-->SKIP TO OE010
            1 = Added
            2 = Replaced
            3 = Added and Replaced
            4 = Removed
            8 = (Refused)-->SKIP TO OE010
            9 = (Don't Know)-->SKIP TO OE010
    HE090. In what month and year did you make these changes?
        (ENTER MONTH/YEAR)
        &HEO90__ MONYYYY
    IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
    HE091. &HE091 YYYY (8 = Refused 9 = Don t Know)
    IF HE080=1 THEN SKIP TO HE120, ELSE ASK:
    HE110. What fuel was used to power the old system?
        &HE110
            1 = Natural Gas
            2 = Propane or Bottled Gas
            3 = Oil
            4 = Steam
            5 = Electricity
            6 = Other SPECIFY: HE111. &HE111
            8 = (Refused)
            9 = (Don't Know)
IF HE080 = 4 THEN SKIP TO OEO10:
HE120. What fuel does the heating system addition use?
    &HE120
            1 = Natural Gas
            2 = Propane or Bottled Gas
Nonparticipant Telephone Survey E-23 1994 PG&E Lighting Evaluation
```

```
3 = Oil
4 = Electricity
5 = Other SPECIFY: HE121. &HE121
8 = (Refused)
9 = (Don't Know)
```

OTHER EQUIPMENT:
OE010. Since January 1992, have you changed other equipment that makes up 10\% or more of the facility's annual electric bill? \&OE010

1 = Yes
0 = No-->SKIP TO OC010
8 = (Refused) -->SKIP TO OC010
$9=$ (Don't Know)-->SKIP TO OC010
OE011. Which of the following types of equipment were changed?
(READ FIRST THREE THEN ASK FOR OTHER)
(READ LIST; ENTER 1 FOR ALL THAT APPLY)
OE012. \&OE012 Water heating
OE013. \&OE013 Cooking
OE014. \&OE014 Refrigeration

Were there any other end uses changed? (RECORD BELOW)
OE015. \&OE015 Other1 SPECIFY: OE016. \&OE016 \qquad
OE017. \&OE017 Other2 SPECIFY: OE018. \&OE018
OE019. \&OE019 (Refused) ---> SKIP to OC010
OE011. \&OE011 (Don't Know) ---> SKIP TO OC010
ASK OE020-OE050 IF OE012=1
OEO20. In what month and year did you change your water heating equipment? (ENTER MONTH/YEAR) \&OEO20__ MONYYYY

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE021. \&OE021 YYYY (8 = Refused 9 = Don't Know)

OE030. Did you ADD TO, REMOVE, or REPLACE water heating equipment?
\&OE030 1 = Added -->SKIP TO OE050
2 = Replaced
3 = Added and Replaced
4 = Removed
8 = (Refused)--->SKIP TO OE060
9 = (Don't Know)--->SKIP TO OE060

OEO40. What fuel was used to power the old water heating equipment?
\&OEO 40
1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE041. \&OE041
Nonparticipant Telephone Survey E-24 1994 PG\&E Lighting Evaluation

$$
8=(\text { Refused })
$$

$9=$ (Don't Know)
IF OE030 = 4 THEN SKIP TO OEO60:
OE050. What fuel does the water heating equipment addition use? \&OE050

1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE051. \&OE051
8 = (Refused)
$9=$ (Don't Know)
ASK OE060-OE090 IF OE013=1
OE060. In what month and year did you change your cooking equipment? (ENTER MONYYYY)
\&OEO60__ MONYYYY
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE061. \&OE061 YYYY (8 = Refused 9 = Don't Know)
OE070. Did you ADD TO, REMOVE, or REPLACE cooking equipment? \&OE070

1 = Added--->SKIP TO OE090
2 = Replaced
3 = Added and Replaced
4 = Removed
8 = (Refused) --->SKIP TO OE100
9 = (Don't Know)--->SKIP TO OE100
OE080. What fuel was used to power the old cooking equipment? \&OE080
$1=$ Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE081. \&OE081
$8=$ (Refused)
9 = (Don't Know)
IF OE070 $=4$ THEN SKIP TO OE100:
OEO90. What fuel does the cooking equipment addition use? \&OEO 90

1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE091. \&OE091
$8=$ (Refused)
$9=$ (Don't Know)
ASK OE100-OE130 IF OE014=1
OE100. In what month and year did you change your refrigeration equipment? (ENTER MONTH/YEAR) \&OE100__ MONYYYY

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR OE101. \&OE101 YYYY ($8=$ Refused $9=$ Don t Know)

OE110. Did you ADD TO, REMOVE, or REPLACE refrigeration equipment? \&OE110

1 = Added--->SKIP TO OE130
Nonparticipant Telephone Survey E-25 1994 PG\&E Lighting Evaluation

2 = Replaced
3 = Added and Replaced
4 = Removed
8 = (Refused) --->SKIP TO OE140
$9=$ (Don't Know)--->SKIP TO OE140
OE120. What fuel was used to power the old refrigeration equipment? \&OE120

1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE121. \&OE121
$8=$ (Refused)
$9=$ (Don't Know)
IF OE110 = 4 THEN SKIP TO OE140
OE130. What fuel does the refrigeration equipment addition use? \&OE130
$1=$ Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE131. \&OE131
8 = (Refused)
$9=$ (Don't Know)
ASK OE140-OE170 IF OE015=1
OE140. In what month and year did you change your \&EQUIP \qquad (ENTER MONTH/YEAR) \&OE140__ MONYYYY

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE141. \&OE141 YYYY (8 = Refused 9 = Don't Know)

OE150. Did you ADD TO, REMOVE, or REPLACE \&EQUIP2 \qquad equipment? \&OE150

1 = Added--->SKIP TO OE170
2 = Replaced
3 = Added and Replaced
4 = Removed
8 = (Refused) --->SKIP TO OE180
$9=$ (Don't Know) --->SKIP TO OE180

OE160. What fuel was used to power the old \&EQUIP \qquad equipment?
\&OE160
1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE161. \&OE161
$8=$ (Refused)
$9=$ (Don't Know)
IF OE150 = 4 THEN SKIP TO OE180
OE170. What fuel does the \&EQUIP \qquad equipment addition use? \&OE170
Nonparticipant Telephone Survey E-26 1994 PG\&E Lighting Evaluation

```
1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE171. &OE171
= (Refused)
9 = (Don't Know)
```

ASK OE180-OE210 IF OE017=1:
OE180. In what month and year did you change your
\&EQUIP_ equipment?
(ENTER MONTH/YEAR)
\&OE180__ MONYYYY (JUN1960)
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OE181. \&OE181 YYYY ($8=$ Refused $9=$ Don't Know)
OE190. Did you ADD TO, REMOVE, or REPLACE \&EQUIP2
\qquad
equipment?
\&OE190 1 = Added--->SKIP TO OE202
2 = Replaced
3 = Added and Replaced
4 = Removed
$8=($ Refused $)--->$ SKIP TO OC010
$9=$ (Don't Know) --->SKIP TO OC010

OE200. What fuel was used to power the old \&EQUIP \qquad equipment? \&OE200

1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE201. \&OE201 \qquad
8 = (Refused)
$9=$ (Don't Know)
IF OE190 = 4 THEN SKIP TO OC010
OE202. What fuel does the \&EQUIP \qquad equipment addition use?
\&OE202 1 = Natural Gas
2 = Propane or Bottled Gas
3 = Oil
4 = Electricity
5 = Other SPECIFY: OE203. \&OE203
$8=$ (Refused)
$9=$ (Don't Know)
OC010. Since January 1992, have you made any other changes that would affect energy usage at this facility?
\&OC010 $1=$ Yes
0 = No--->SKIP TO EM010
8 = (Refused)--->SKIP TO EM010
9 = (Don't Know) ---> SKIP TO EM010
OC020. What type of changes were made?
\&OC020
\&OC021 \qquad

0C030. In what month and year were these changes made?
(ENTER MONTH/YEAR) \&OC030 \qquad MONYYYY

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
OC031. \&OC031 YYYY (8 = Refused 9 = Don't Know)
Nonparticipant Telephone Survey E-27 1994 PG\&E Lighting Evaluation

EM010. Do you have an in-house Energy Management System at this facility? \&EM010

```
1 = Yes
0 = No-->SKIP TO CP010
8 = (Refused)-->SKIP TO CP010
9 = (Don't Know)-->SKIP TO CP010
```

EMO20. In what month and year was the Energy Management System installed? (ENTER MONTH/YEAR) \&EMO20__ MONYYYY

IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
EM021. \&EM021 YYYY $8=$ (Refused)
$9=$ (Don't Know)
CP010. Do you have a cogeneration plant at this facility? \&CP010

$$
\begin{aligned}
& 1=\text { Yes } \\
& 0=\text { No } \quad->\text { SKIP } \\
& 8=\text { (Refused) --> SKIP } \\
& 9=\text { (Don't Know) --> SKIP }
\end{aligned}
$$

CP020. In what month and year did the cogeneration plant begin operating? (ENTER MONTH/YEAR)
\&CPO20__ MONYYYY
IF DOESN'T KNOW, ASK FOR BEST GUESS AND/OR YEAR
CP021. \&CP021 YYYY ($8=$ Refused $9=$ Don t Know)
Those are all of the questions I have for you at this time. Before you go I'd like to get your job title.
USE JOB KEY TO CODE ALL:
1 = President/Owner $2=$ Senior Manager
3 = Financial Manager $4=$ Energy Manager
5 = Operations Manager 6 = Building Manager
7 = Other SPECIFY
DECISION TITLE CF009. Job Title: \&DTITLN SPECIFY: \&DTITLOTR
TECHNICAL TITLE CF010. Job Title: \&TTITLN SPECIFY: \&TTITLOTR_
LIGHTING TITLE CF011. Job Title: \<ITLN SPECIFY: \<ITLOTR
$==>$ \&DIV_COD2 <== ==> \&SERVCITY <== ==> \&OSFLAG <== 1 = OK OS
0 = NO OS
TO SKIP TO ON-SITE RECRUITMENT ENTER 1: MEASTYP: \&MEASTYP
TO SKIP TO COMMENT FIELDS ENTER 2: BUSTYP: \&BUSTYP
TO SKIP FORWARD ENTER 1 OR 2 HERE ==> \&SKIP
DE1. Do you have any additional comments at this time? \&DE1 $1=$ Yes $0=$ No $8=$ (Refused) 9 (Don't Know) \&DECOMM1 \&DECOMM2 \&DECOMM3
IF THERE ARE ANY COMMENTS ABOUT THE ANSWERS WITHIN THIS SURVEY ENTER 1 HERE, THEN ENTER YOUR COMMENTS==> \&COMM
\&NOTE1
\&NOTE2
\&NOTE3
\&NOTE4
\&NOTE5
\&NOTE6
Nonparticipant Telephone Survey E-28 1994 PG\&E Lighting Evaluation

```
IF THE RESPONDENT ASK FOR PG&E REP'S PHONE # ENTER 1, AND THEN REASON &REP
    &NOTREP1
    &NOTREP2
    Those are all the questions I have for today. On behalf of
    Pacific Gas and Electric, thank you very much for your time and
    cooperation.
    F4 TO FIRST SCREEN AND CODE RESULT
A subsample of customers who complete telephone surveys are being
asked to participate in an additional on-site follow up visit. Your
site has been selected for one of these follow up visits. These on-
site visits provide additional data that is used to evaluate and
verify the savings achieved by the new lighting equipment. Would
you be interested in having one of our qualified technicians come
and conduct an on-site inspection?
    OS001. &OS001
    1 = Respondent will continue
    0 = Respondent will not continue
OSO05. Are you the best person who can allow us access to
    physically inspect the retrofitted electrical equipment?
    &OSO05 1 = Yes --> SKIP TO 2nd CONTACT
    O = No
    8 = (Refused)
    9 = (Don't Know)
```

```
Who would be the best person who could allow us access to
physically inspect the retrofitted electrical equipment?
READ CONTACTS, OR GET ADDITIONAL CONTACT INFO:
    DECIS NAME: &DNAME
    DECIS TITLE: &DTITLF
    DECIS BUSINESS: &DBUSNAM
    DECIS PHONE: ( &DAC_ ) &DPRE - &DLAST Ext: &DEXT
    TECH NAME: &TNAME
    TECH TITLE: &TTITLF__
    TECH BUSINESS: &TBUSNAM
    TECH PHONE: ( &TAC_ ) &TPRE - &TLAST Ext: &TEXT
    LIGHT NAME: &LNAME
    LIGHT TITLE: &LTITLF
    LIGHT BUSINESS: &LBUSNAM
    LIGHT PHONE: ( &LAC_ ) &LPRE - &LLAST Ext: &LEXT
IF DECIS ENTER 1, ELSE IF TECH ENTER 2, ELSE IF LIGHT ENTER 3,
ELSE IF NEW ON-SITE CONTACT ENTER 4: ===> &WHOOS
```

ENTER INFO FOR ON-SITE CONTACT:

OS NAME:	$\& O S N A M E$
OS BUSINESS:	$\& O S B U S N A M$
OS PHONE:	$(\& O S A) \& O S P-$ \&OSL Ext: \&OSEXT
OS TITLE:	$\& O S T I T L N$
	$1=$ President/Owner
	$2=$ Senior Manager
	$3=$ Financial Manager
	$4=$ Energy Manager
	$5=$ Operations Manager
	$6=$ Building Manager
	$7=$ Other SPECIFY: \&OSTILOTR

ENTER 1 TO SKIP FORWARD: ==> \&SKIP

Who would be an additional person who can allow us access and be knowlegable about the electrical equipment at the facility? READ CONTACT NAMES, IF NOT ONE OF THESE, GET ADDITIONAL CONTACT INFO:
DECIS NAME: \&DNAME
DECIS TITLE: \&DTITLF
DECIS BUSINESS: \&DBUSNAM
DECIS PHONE: (\&DAC) \&DPRE - \&DLAST Ext: \&DEXT
TECH NAME: \&TNAME
TECH TITLE: \&TTITLF
TECH BUSINESS: \&TBUSNAM
TECH PHONE: (\&TAC) \&TPRE - \&TLAST Ext: \&TEXT
LIGHT NAME: \&LNAME
LIGHT TITLE: \<ITLF
LIGHT BUSINESS: \&LBUSNAM
LIGHT PHONE: (\&LAC) \&LPRE - \&LLAST Ext: \&LEXT

IF DECIS ENTER 1, ELSE IF TECH ENTER 2 , ELSE IF LIGHT ENTER 3
IF OTHER THAN THESE THEN ENTER 4 ===> \&WHOOS2

```
GET SECONDARY ON-SITE CONTACT INFORMATION;
SECOND CONTACT NAME &OSNAM2
SECOND CONTACT BUSINESS: &OSBUSNM2
SECOND CONTACT PHONE: ( &OA2 ) &OP2 - &OL2 EXT: &OSEXT2
SECOND CONTACT TITLE: &OSTITN2
    1 = President/Owner
    2 = Senior Manager
    3 = Financial Manager
    4 = Energy Manager
    5 = Operations Manager
    6 = Building Manager
    7 = Other SPECIFY: &OSTIL2OT
```

COMMENTS: \&OSCOM21
COMMENTS: \&OSCOM22
ENTER 1 TO SKIP FORWARD ==> \&SKIP
IF YOU WISH TO SCHEDULE AN APPOINTMENT WITH THE PERSON ON THE PHONE
ENTER 1, ELSE READ BELOW THEN ENTER 2 AND CODE OS RESULT;
$===>$ \&SKIP
Those are all of the questions I have for you at this time.
I will contact \&OSNAME__ to schedule
the on-site audit. On behalf of $P G \& E$, thank you for your time
and cooperation.
At this time, we would like to schedule an appointment for one of
our our representatives to meet with you at your facility to
conduct the survey and inspect the building's new lighting
equipment.

OS020. Can we schedule a time now for one of our representatives to meet with you at your facility? \&OS020 $1=$ Yes --> SKIP OS030
$0=\mathrm{No}$
8 = (Refused)
9 = (Don't Know)

OS045. What is the closest cross street to the facility at
\qquad ?

Cross Street: \&XSTREET \qquad
ENTER 1 TO SKIP FORWARD: \&SKIP

```
ENTER DAY: &VISDAY__ DISTRICT: &DIV_COD2
ENTER DATE: &VISDAT2__
ENTER START TIME: &VISTIM1 WHO: 1 = Kevin Shovah CODE: &MAILV
END TIME: &VISTIM2 2 = Joe O'Mally
ENTER WHO: &VISWHO 3 = Paul William
IS THE INFORMATION CORRECT &CORR 4 = Denis Ley
USE 24HR CLOCK!!!! 1 = Yes 5 = Chuck Bennett
O = No
I'll give you the following }800\mathrm{ number, should you need to reschedule or
cancel the appointment. The number is 1-800-540-7201.
If at the time of the audit, you could have a recent PG&E bill available
for the auditor, it would be very helpful.
    DO NOT READ
    Did the customer ask us to provide a Certificate of Insurance, or
    Proof of Insurance?
    &INSURE 1 = Yes 0 = No
    Did the customer have any concerns about sensitive issues or processes
    at their facility?
    &TIPTOE 1 = Yes 0 = No
```

Let me just confirm this information with you:
YOUR NAME IS: \&NEWNAME2
AT: \&NEWBUS2
YOUR TITLE IS: \&NEWTITL2__
YOUR ADDRESS IS: \&NEWADD2
YOUR PHONE NUMBER IS: (\&N1_) \&N2_ - \&N3__ EXTENSION: \&NEXT
OS050. Is this information correct?
\&OS050 $1=$ Yes $0=$ No $8=$ (Refused) $9=$ (Don't Know)
CORRECTED INFO: ENTER ALL INFORMATION
NAME: \&NEWNAME5
BUSINESS: \&NEWBUS5
ADDRESS: \&NEWADD5
PHONE: (\&N51) \&N52 - \&N53_ EXT: \&NEXT5
TITLE: \&NEWTITN5 SPECIFY: \&NEWTIOTR
1 = President/Owner $2=$ Senior Manager $3=$ Financial Manager
4 = Energy Manager 5 = Operations Manager 6 = Building Manager
7 = Other SPECIFY
Thank you very much. I will contact \&NEWNAME3
\qquad
On behalf of Pacific Gas and Electric, thank you for your time today.
GO TO SC150 AND CODE RESULT: ALWAYS ENTER '1': \&SKIP

Appendix F

FINAL PARTICIPANTS ON-SITE INSTRUMENT

PG \&E COMMERCIAL AND INDU STRIAL LIGHTING TECHNO LO GIES EVALUATIO N On-site ID: \qquad O VERALL FACILITY CHARACTERISTICS

Sheet 1 of \qquad

Is this a logger site? __<Yes/No>__-_
Appointment date: __Sched. Date>__
Company name: ___<Co. Name>__-
Company Address: \qquad <Add \& Num>
City and Zip: ___ <City \& Zip>
Contact name: __ <Sched. Contact>_
Contact phone no: __ Sched. Phone No.>__-
Alternate Contact: __ <Sched. Contact2>_
Alternate phone no: __Sched. Phone No.2>_
Actual Contact: \qquad
Actual phone no: \qquad
Facility function description: __<Bustype>_PG \&E account no.: __ <Acc. No.>_
PG \& E control no.: __<Cntrl No.>_

Inspector:
Appointment Time: ___ Sched. Time____
On-Site Date \qquad

Contact title: \qquad

Alternate title: \qquad
Actual title: \qquad

Facility function update: __**PD\#1-1** \qquad
Verify account no.: ___*PD\#1-2** \qquad
Verify control no.: __-**PD\#1-3**___-_
No. PG \&E accounts for retrofit area?: __ <No. Accts>__ Verify no. accnts: __-**PD\#1-4**_-_
PG\&E cntrl 1:
PG\&E cntrl 2:
PG\&E cntrl 3:
\% Retro cntrl 1: _**PD\#1-5**_ \% Retro cntrl 2: _**PD\#1-6** \% Retro cntrl 3: _**PD\#1-7**
S.I.C. Code: __ <SIC>__ Verify SIC: __**PD\#1-8**_
No. of stories: ____ Year built ____-_ Total sq. ft.: ___-__ No. of people @ 4:00 PM:

Sq. ft. heated: __-_-_-_-_-_ Sq. ft. air cond: \qquad Sq. ft. of Retrofit: \qquad Is retrofitted area heated? __**PD\#1-9**_Is retrofitted area air conditioned? __*PD\#1-10**_ Primary function of retro. area: __**PD\#1-11**__ \% of all lights retrofitted: _**PD\#112**

Heating fuel: __**PD\#1-13**_
Cooling fuel: __**PD\#1-15**_
\qquad
Heating system type: ___*PD\#1-14** \qquad \% of retrofit on outer 15' perimeter: __**PD\#1-17**_ Economizer?: ___*PDD\#1-18**_

D oes the facility replace all fluorescent lamps routinely (relamp)? __**PD\#1-19**_ If yes, how often does complete relamping occur? __**PD\#1-20**_ (months) How often are burned out lamps replaced? __**PD\#1-21**

Comments?
UTD =Unable to determine.

PG \&E CO MMERCIAL AND INDU STRIAL LIGHTING TECHNO LO GIES EVALUATIO N
On-site ID: \qquad SCHEDULE GROUP WORKSHEET FORM
Sheet 2 of \qquad

Date: __**PD\#2-1**__
Total tenant square footage: __**PD\#2-2**_s. sq. ft.
Group 2 W eekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**_
Group 2 Saturday Lights Sched.: From __**PD\#2-5**_ to __*PD\#2-6**_ Group 2 Sunday Lights Sched.: From __**PD\#2-7**_ to __**PD\#2-8**__ Percent of Tenant Square Footage.: __**PD \#2-10**_
Percent Night or Safety Lights.: __**PD\#2-11**_ Group 2 Primary Use: __**PD\#2-12**_
Group 3 W eekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**_-
Group 3 Saturday Lights Sched.: From __**PD\#2-5**_ to __*PD\#2-6**_
Group 3 Sunday Lights Sched.: From __**PD\#2-7**_ to __**PD\#2-8**__
Percent of Tenant Square Footage.: __**PD\#2-10**
Percent Night or Safety Lights.: __**PD\#2-11**_ Group 3 Primary Use: __**PD\#2-12**_

Group 4 W eekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**__ Group 4 Saturday Lights Sched.: From __**PD\#2-5**_ to __*PDD\#2-6**_ Group 4 Sunday Lights Sched.: From __**PD\#2-7**_ to __**PD\#2-8**__ Percent of Tenant Square Footage.: __**PD\#2-10**__
Percent Night or Safety Lights.: __*PD\#2-11**_ Group 4 Primary Use: __**PD\#2-12**__
Group 5 thru N Weekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**__ Group 5 thru N Saturday Lights Sched.: From __**PD\#2-5**_ to __**PD\#2-6**__ Group 5 thru N Sunday Lights Sched.: From __**PD\#2-7**_ to __*PD\#2-8**_ Percent of Tenant Square Footage.: __**PD\#2-10**__
Percent Night or Safety Lights.: __**PD\#2-11**_Group 5 Primary Use: __**PD\#2-12**__

Group 1 -- "Exit Lights" on a Twenty-Four Hour per Day Schedule

 Percent of Tenant Square Footage.: __**PD\#2-10**_
PG \&E COMMERCIAL AND INDUSTRIAL LIGHTING TECHNOLOGIES EVALUATIO N

On-site ID: \qquad RETENTIO N PANEL WORKSHEET FORM
Sheet 3 of \qquad Date: _-**PD\#3-1**_-_
Building Plans Secured?: __*PD\#3-2**

Install.

PG \&E COMMERCIAL AND INDUSTRIAL LIGHTING TECHNOLOGIES EVALUATIO N
On-site ID: \qquad NEW TECHNOLOGY INSPECTION SHEET
Sheet \qquad of \qquad

*Line amps if stated, not 430 or 460 ma lamp current.
$\ddagger \ddagger$ No. of bumed out lamps must be counted separately and exclusive of bumed out fixtures.

PG \&E COMMERCIAL AND INDUSTRIAL LIGHTING TECHNOLOGIES EVALUATIO N
On-site ID: \qquad EXISTING TECHNOLOGY INSPECTION SHEET

Sheet \qquad of \qquad

PG \＆E CO MMERCIAL AND INDUSTRIAL LIGHTING TECHNO LO GIES EVALUATIO N

On－site ID：

AD DITIO NAL COMMENTS
Sheet of
\qquad

 －ーーー

\qquad

\qquad

Appendix G

FINAL NONPARTICIPANTS ON-SITE INSTRUMENT

PG \&E COMMERCIAL AND INDU STRIAL LIGHTING TECHNO LO GIES EVALUATIO N On-site ID: \qquad O VERALL FACILITY CHARACTERISTICS

Sheet 1 of \qquad

Is this a logger site? __<Yes/No>__-_
Appointment date: __Sched. Date>__
Company name: ___<Co. Name>__-
Company Address: \qquad <Add \& Num>
City and Zip: ___ <City \& Zip>
Contact name: __ <Sched. Contact>_
Contact phone no: __ Sched. Phone No.>__-
Alternate Contact: __ <Sched. Contact2>_
Alternate phone no: __Sched. Phone No.2>_
Actual Contact: \qquad
Actual phone no: \qquad
Facility function description: __<Bustype>_PG \&E account no.: __ <Acc. No.>_
PG \& E control no.: __<Cntrl No.>_

Inspector:
Appointment Time: ___ Sched. Time____
On-Site Date \qquad

Contact title: \qquad

Alternate title: \qquad
Actual title: \qquad

Facility function update: __**PD\#1-1** \qquad
Verify account no.: ___*PD\#1-2** \qquad
Verify control no.: __-**PD\#1-3**___-_
No. PG \&E accounts for retrofit area?: __ <No. Accts>__ Verify no. accnts: __-**PD\#1-4**_-_
PG\&E cntrl 1:
PG\&E cntrl 2:
PG\&E cntrl 3:
\% Retro cntrl 1: _**PD\#1-5**_ \% Retro cntrl 2: _**PD\#1-6** \% Retro cntrl 3: _**PD\#1-7**
S.I.C. Code: __ <SIC>__ Verify SIC: __**PD\#1-8**_
No. of stories: ____ Year built ____-_ Total sq. ft.: ___-__ No. of people @ 4:00 PM:

Sq. ft. heated: __-_-_-_-_-_ Sq. ft. air cond: \qquad Sq. ft. of Retrofit: \qquad Is retrofitted area heated? __**PD\#1-9**_Is retrofitted area air conditioned? __*PD\#1-10**_ Primary function of retro. area: __**PD\#1-11**__ \% of all lights retrofitted: _**PD\#112**

Heating fuel: __**PD\#1-13**_
Cooling fuel: __**PD\#1-15**_
\qquad
Heating system type: ___*PD\#1-14** \qquad \% of retrofit on outer 15' perimeter: __**PD\#1-17**_ Economizer?: ___*PDD\#1-18**_

D oes the facility replace all fluorescent lamps routinely (relamp)? __**PD\#1-19**_ If yes, how often does complete relamping occur? __**PD\#1-20**_ (months) How often are burned out lamps replaced? __**PD\#1-21**

Comments?
UTD =Unable to determine.

PG \&E CO MMERCIAL AND INDU STRIAL LIGHTING TECHNO LO GIES EVALUATIO N
On-site ID: \qquad SCHEDULE GROUP WORKSHEET FORM
Sheet 2 of \qquad

Date: __**PD\#2-1**__
Total tenant square footage: __**PD\#2-2**_s. sq. ft.
Group 2 W eekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**_
Group 2 Saturday Lights Sched.: From __**PD\#2-5**_ to __*PD\#2-6**_ Group 2 Sunday Lights Sched.: From __**PD\#2-7**_ to __**PD\#2-8**__ Percent of Tenant Square Footage.: __**PD \#2-10**_
Percent Night or Safety Lights.: __**PD\#2-11**_ Group 2 Primary Use: __**PD\#2-12**_
Group 3 W eekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**_-
Group 3 Saturday Lights Sched.: From __**PD\#2-5**_ to __*PD\#2-6**_
Group 3 Sunday Lights Sched.: From __**PD\#2-7**_ to __**PD\#2-8**__
Percent of Tenant Square Footage.: __**PD\#2-10**
Percent Night or Safety Lights.: __**PD\#2-11**_ Group 3 Primary Use: __**PD\#2-12**_

Group 4 W eekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**__ Group 4 Saturday Lights Sched.: From __**PD\#2-5**_ to __*PDD\#2-6**_ Group 4 Sunday Lights Sched.: From __**PD\#2-7**_ to __**PD\#2-8**__ Percent of Tenant Square Footage.: __**PD\#2-10**__
Percent Night or Safety Lights.: __*PD\#2-11**_ Group 4 Primary Use: __**PD\#2-12**__
Group 5 thru N Weekday Lights Sched.: From __**PD\#2-3**_ to __**PD\#2-4**__ Group 5 thru N Saturday Lights Sched.: From __**PD\#2-5**_ to __**PD\#2-6**__ Group 5 thru N Sunday Lights Sched.: From __**PD\#2-7**_ to __*PD\#2-8**_ Percent of Tenant Square Footage.: __**PD\#2-10**__
Percent Night or Safety Lights.: __**PD\#2-11**_Group 5 Primary Use: __**PD\#2-12**__

Group 1 -- "Exit Lights" on a Twenty-Four Hour per Day Schedule

 Percent of Tenant Square Footage.: __**PD\#2-10**_
PG \&E COMMERCIAL AND INDUSTRIAL LIGHTING TECHNOLOGIES EVALUATIO N

On-site ID: \qquad RETENTIO N PANEL WORKSHEET FORM
Sheet 3 of \qquad Date: _-**PD\#3-1**_-_
Building Plans Secured?: __*PD\#3-2**

Install.

PG \&E COMMERCIAL AND INDUSTRIAL LIGHTING TECHNOLOGIES EVALUATIO N
On-site ID: \qquad NEW TECHNOLOGY INSPECTION SHEET
Sheet \qquad of \qquad

*Line amps if stated, not 430 or 460 ma lamp current.
$\ddagger \ddagger$ No. of bumed out lamps must be counted separately and exclusive of bumed out fixtures.

PG \&E COMMERCIAL AND INDUSTRIAL LIGHTING TECHNOLOGIES EVALUATIO N
On-site ID: \qquad EXISTING TECHNOLOGY INSPECTION SHEET

Sheet \qquad of \qquad

PG \＆E CO MMERCIAL AND INDUSTRIAL LIGHTING TECHNO LO GIES EVALUATIO N

On－site ID：

AD DITIO NAL COMMENTS
Sheet of
\qquad

 －ーーー

\qquad

\qquad

Appendix H

PARTICIPANTS TELEPHONE SURVEY RESPONSE FREQUENCIES

Own building?/Tech

| | Sc001T | Frequency | Percent | Cumulative
 Frequency |
| :--- | :---: | :---: | :---: | :---: | | Cumulative |
| :---: |
| Percent |

	FI001T	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		1	4.8	1	4.8
Yes		20	95.2	21	100.0
Frequency Missing $=458$					
Firm manages prop/Tech					
	FI002T	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		9	56.3	9	56.3
Yes		7	43.8	16	100.0

Frequency Missing $=463$

Own building?/Light

| | SC001L | Frequency | Percent | Cumulative
 Frequency |
| :--- | :---: | :---: | :---: | :---: | | Cumulative |
| :---: |
| Percent |

Frequency Missing $=471$

Commercial Program Participants Page H-2 1994 PG\&E Lighting Evaluation

Firm occupies space/Light			
FIO01L Frequency	PercentCumulative Frequency	Cumulative Percent	
Yes	6	100.0	6

Firm manages prop/Light

FIO 2L	Frequency	PercentCumulative Frequency	Cumulative Percent	
Yes	3	100.0	3	100.0

	FIO03	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		150	31.8	150	31.8
Yes		322	68.2	472	100.0
Frequency Missing = 7					

	FIOO4	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		35	17.5	35	17.5
Yes		165	82.5	200	100.0
Frequency Missing $=279$					

Is person decision maker				
SC003	Frequency	Percent	Frequency	Cumulative
Percent				

	SC005	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		17	3.6	17	3.6
Yes		453	96.4	470	100.0
Frequency Missing $=9$					

	SCOO 6	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		11	2.3	11	2.3
Yes		461	97.7	472	100.0
Frequency Missing $=7$					

SC035	Frequency	Percent	Cumulative Frequency	Cumulative Percent
JUL1993	13	2.8	13	2.8
AUG1993	8	1.7	21	4.6
SEP1993	10	2.2	31	6.8
OCT1993	11	2.4	42	9.2
NOV1993	12	2.6	54	11.8
DEC1993	32	7.0	86	18.7
JAN1994	23	5.0	109	23.7
FEB1994	31	6.8	140	30.5
MAR1994	17	3.7	157	34.2
APR1994	36	7.8	193	42.0
MAY1994	33	7.2	226	49.2
JUN1994	54	11.8	280	61.0
JUL1994	43	9.4	323	70.4
AUG1994	53	11.5	376	81.9
SEP1994	81	17.6	457	99.6
DEC1994	2	0.4	459	100.0
Frequency Missing = 20				

SC037	Frequency	Percent	Cumulative Frequency	Cumulative Percent
JUL1993	3	7.1	3	7.1
OCT1993	1	2.4	4	9.5
DEC1993	2	4.8	6	14.3
JAN1994	4	9.5	10	23.8
MAR1994	2	4.8	12	28.6
APR1994	3	7.1	15	35.7
MAY1994	4	9.5	19	45.2
JUN1994	6	14.3	25	59.5
JUL1994	4	9.5	29	69.0
AUG1994	8	19.0	37	88.1
SEP1994	5	11.9	42	100.0

Frequency Missing $=437$

| | Date of installation - Lighting |
| :---: | :---: | :---: | :---: | :---: |

Frequency Missing $=463$

Multiple accnts for addr?			
FI007	Frequency	Percent	Cumulative
Frequency	Cumulative	Percent	

	Num buildings covered by address			
FI010	Frequency	Percent	Cumulative Frequency	Cumulative Percent
O	2	1.8	2	1.8
1	15	13.2	17	14.9
2	23	20.2	40	35.1
3	11	9.6	51	44.7
4	4	3.5	55	48.2
5	5	4.4	60	52.6
6	3	2.6	63	55.3
7	5	4.4	68	59.6
8	5	4.4	73	64.0
9	4	3.5	77	67.5
10	3	2.6	80	70.2
11	3	2.6	83	72.8
12	3	2.6	86	75.4
13	4	3.5	90	78.9
14	4	3.5	94	82.5
15	3	2.6	97	85.1
16	2	1.8	99	86.8
17	3	2.6	102	89.5
18	3	2.6	105	92.1
19	1	0.9	106	93.0
20	1	0.9	107	93.9
21	2	1.8	109	95.6
22	3	2.6	112	98.2
23	1	0.9	113	99.1
37	1	0.9	114	100.0

Frequency Missing $=365$

Separate bills for buildings?					
		Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		85	85.9	85	85.9
Yes		14	14.1	99	100.0
		Frequen	Missin	$=380$	

	Any locats of bisns part n RE/CI			
BC021	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	226	52.8	226	52.8
1	58	13.6	284	66.4
2	29	6.8	313	73.1
3	15	3.5	328	76.6
4	7	1.6	335	78.3
5	9	2.1	344	80.4
7	4	0.9	348	81.3
8	1	0.2	349	81.5
9	2	0.5	351	82.0
10	1	0.2	352	82.2
11	7	1.6	359	83.9
12	2	0.5	361	84.3
13	2	0.5	363	84.8
14	1	0.2	364	85.0
16	2	0.5	366	85.5
17	13	3.0	379	88.6
18	18	4.2	397	92.8
20	10	2.3	407	95.1
25	7	1.6	414	96.7
29	1	0.2	415	97.0
43	9	2.1	424	99.1
100	4	0.9	428	100.0

EI010	Frequency	Percent	Cumulative Frequency	Cumulative Percent
60	10	2.3	348	80.7
65	3	0.7	351	81.4
70	5	1.2	356	82.6
71	1	0.2	357	82.8
75	4	0.9	361	83.8
80	6	1.4	367	85.2
95	1	0.2	368	85.4
100	12	2.8	380	88.2
115	1	0.2	381	88.4
120	2	0.5	383	88.9
125	1	0.2	384	89.1
130	1	0.2	385	89.3
140	1	0.2	386	89.6
150	21	4.9	407	94.4
163	1	0.2	408	94.7
165	1	0.2	409	94.9
180	1	0.2	410	95.1
185	1	0.2	411	95.4
200	7	1.6	418	97.0
205	1	0.2	419	97.2
220	1	0.2	420	97.4
250	2	0.5	422	97.9
300	2	0.5	424	98.4
330	1	0.2	425	98.6
350	1	0.2	426	98.8
600	1	0.2	427	99.1
1000	2	0.5	429	99.5
1400	1	0.2	430	99.8
1500	1	0.2	431	100.0

Any change in number of employees?

EI020
Frequency

Year of change in employees				
EI031	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1992	4	13.3	4	13.3
1993	8	26.7	12	40.0
1994	16	53.3	28	93.3
1995	2	6.7	30	100.0

EI040		Number people employed B4 chng			
		Frequency	Percent	Cumulative Frequency	Cumulative Percent
	1	2	2.2	2	2.2
	2	5	5.4	7	7.6
	3	5	5.4	12	13.0
	4	5	5.4	17	18.5
	5	6	6.5	23	25.0
	6	4	4.3	27	29.3
	7	3	3.3	30	32.6
	8	3	3.3	33	35.9
	9	2	2.2	35	38.0
	10	2	2.2	37	40.2
	11	3	3.3	40	43.5
	12	2	2.2	42	45.7
	13	2	2.2	44	47.8
	14	2	2.2	46	50.0
	15	4	4.3	50	54.3
	16	1	1.1	51	55.4
	18	2	2.2	53	57.6
	19	1	1.1	54	58.7
	20	1	1.1	55	59.8
	22	6	6.5	61	66.3
	24	1	1.1	62	67.4
	25	3	3.3	65	70.7
	28	2	2.2	67	72.8
	30	3	3.3	70	76.1
	31	1	1.1	71	77.2
	33	1	1.1	72	78.3
	40	2	2.2	74	80.4
	45	1	1.1	75	81.5
	50	1	1.1	76	82.6
	51	1	1.1	77	83.7
	60	1	1.1	78	84.8
	65	1	1.1	79	85.9
	70	1	1.1	80	87.0
	80	2	2.2	82	89.1
	100	2	2.2	84	91.3
	112	1	1.1	85	92.4
	145	1	1.1	86	93.5
	250	2	2.2	88	95.7
	325	1	1.1	89	96.7
Season	Workforce	3	3.3	92	100.0

OBS EIO41				
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	APPROX. 50 EXTRA EMPLOYEES FOR HOLIDAYSWINTERTIME MORE			
	Organizational Structure			
FIO 40	0 Frequency	Percent	Cumulative Frequency	Cumulative Percent
Chain/Multifacil	$1 \quad 100$	22.4	100	22.4
Franchise	31	6.9	131	29.3
Independant	316	70.7	447	100.0
	Frequency	Missing	32	

```
    OBS FIO45
    MAIL BOXES ETC.
    GREAT WESTERN
    PRIMARY PLUS
    GREAT WESTERN
    MASONS
    DEPARTMENT OF INTERIOR
    US BANK
    US BANK
    GREAT WESTERN
    US BANK
    WELLS FARGO BANK
    US BANK
    US BANK
    US BANK
    SERVICE CORP. INTERNTL
    MOTHER LODE HOLDING CO
    GREAT WESTERN
    SARATOGA BAN CORP
    COUNTY OF SANTA BARBARA
    CITY OF MANTECA
    CITY OF SAN MATEO
    CHEVRON
    AIR TOUCH
    UNION PACIFIC CORPORATION
    SCOTTY RENTS INC
    PARADISE RECR AN PARK DISTRICT.
    MUFARRAH ENTERPRISE
    VALU8ES INC.
    ROLLINS LEASING CORP.
    CARE PHARMACIES INCORPORATED
    KUMAR JEWELERS, INC.
    AUTO PARTS WHOLESALE
    KAISER FOUNDATION
    TOYS R US, INC.
    COIT SERVICES INC.
    BROADWAY STORES INC.
    FUJI FILM.
    AMERICAN LINEN
    BROADWAY STORES INC.
    CALIFORNIA FAIRS
    PETCO ANIMAL SUPPLIES
    SAFEGUARD SCIENTIFIC
    PETROLEUM SALES INC.
    PETCO ANIMAL SUPPLIES
    N. CAL CON. OF 7TH DAY ADVENT.
    FAIRFEILD SUSUIN UNIFIED SCHOOL DISTRICT
    PRINCETON JOINT UNIFIED SCHOOLS
    LEMORE ELEMENTARY SCHOOL DISTRICT
    LOS LOMITAS SCHOOL DISTRICT
    MARIPOSA COUNTY SCHOOL DIST.
    MARIPOSA COUNTY SCHOOL DIST.
    OAKLAND DIOCESES
    SCHOOL DIST.
\begin{tabular}{|c|c|}
\hline OBS & FIO 45 \\
\hline 54 & AMERICAN STORES \\
\hline 55 & AMERICAN STORES \\
\hline 56 & AMERICAN STORES \\
\hline 57 & AMERICAN STORES \\
\hline 58 & AMERICAN STORES \\
\hline 59 & AMERICAN STORES \\
\hline 60 & AMERICAN STORES \\
\hline 61 & AMERICAN STORES \\
\hline 62 & AMERICAN STORES \\
\hline 63 & AMERICAN STORES \\
\hline 64 & AMERICAN STORES \\
\hline 65 & AMERICAN STORES \\
\hline 66 & AMERICAN STORES \\
\hline 67 & AMERICAN STORES \\
\hline 68 & AMERICAN STORES \\
\hline 69 & AMERICAN STORES \\
\hline 70 & AMERICAN STORES \\
\hline 71 & AMERICAN STORES \\
\hline 72 & WENDYS INT. \\
\hline 73 & NATIONS FOOD SERVICE \\
\hline 74 & NATIONS FOOD SERVICE \\
\hline 75 & SPECTURM FOODS \\
\hline 76 & TRANSAMERICA \\
\hline 77 & LYONS REST. \\
\hline 78 & WENDYS INT. \\
\hline 79 & LYONS REST. \\
\hline 80 & LYONS REST. \\
\hline 81 & KASIER PERMANENTE \\
\hline 82 & ADVENTISIT HEALTH SYSTEMS WEST. \\
\hline 83 & ADVENTISIT HEALTH SYSTEMS WEST. \\
\hline 84 & HILLSDALE GROUP \\
\hline 85 & MAIN STREET ATHLETICS \\
\hline 86 & INDEPENDENT QUALITY CARE \\
\hline 87 & NORTHERN CAL 7 DAY ADVEN. \\
\hline 88 & HEALTH CARE MANAGEMENT \\
\hline 89 & CLUB CORP OF AMERICA \\
\hline 90 & KAISER FOUNDATION \\
\hline 91 & CHAMA INC \\
\hline 92 & KASIER FOUNDATION HOSPITAL \\
\hline 93 & CATHOLIC HEALTH CARE WEST \\
\hline 94 & GUIDE DOGS FOR THE BLIND \\
\hline 95 & KEMPTON GROUP \\
\hline 96 & NORCAL ELECTRIC \\
\hline 97 & PUBLIC STORAGE MANAGEMENT INC. \\
\hline 98 & UNITED STATES COMPANY \\
\hline 99 & GRAYBAR ELECTRIC INC. \\
\hline 100 & NETCO FOODS INC \\
\hline 101 & CITY OF MANTECA \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline FI060 F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Locally on site & 331 & 72.4 & 331 & 72.4 \\
\hline Regional head & 89 & 19.5 & 420 & 91.9 \\
\hline National head & 22 & 4.8 & 442 & 96.7 \\
\hline PM firm/build owner & 4 & 0.9 & 446 & 97.6 \\
\hline Other & 4 & 0.9 & 450 & 98.5 \\
\hline Local owner & 3 & 0.7 & 453 & 99.1 \\
\hline Board Of Supervisors & s 4 & 0.9 & 457 & 100.0 \\
\hline
\end{tabular}


Level of revenue
\begin{tabular}{|c|c|c|c|c|}
\hline FIO75 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Local & 159 & 70.4 & 159 & 70.4 \\
\hline Regional & 59 & 26.1 & 218 & 96.5 \\
\hline National & 7 & 3.1 & 225 & 99.6 \\
\hline Worldwide & 1 & 0.4 & 226 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=253\)
\begin{tabular}{|c|c|c|c|c|}
\hline FI080 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline All included & 53 & 26.8 & 53 & 26.8 \\
\hline Some included & 14 & 7.1 & 67 & 33.8 \\
\hline All paid direct & 131 & 66.2 & 198 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=281\)} \\
\hline \multicolumn{5}{|c|}{Indoor Light paid thru lease} \\
\hline FIO90 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & 5 & 41.7 & 5 & 41.7 \\
\hline Yes & 7 & 58.3 & 12 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 467} \\
\hline \multicolumn{5}{|c|}{Heat paid thru lease} \\
\hline FIO91 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & 6 & 50.0 & 6 & 50.0 \\
\hline Yes & 6 & 50.0 & 12 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 467} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO92 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No
Yes & & \[
\begin{aligned}
& 6 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 54.5 \\
& 45.5
\end{aligned}
\] & \[
\begin{array}{r}
6 \\
11
\end{array}
\] & \[
\begin{array}{r}
54.5 \\
100.0
\end{array}
\] \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=468\)} \\
\hline \multicolumn{6}{|c|}{Elec to outlets paid thru lease} \\
\hline & FI093 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No Yes & & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 50.0 \\
& 50.0
\end{aligned}
\] & \[
\begin{array}{r}
6 \\
12
\end{array}
\] & \[
\begin{array}{r}
50.0 \\
100.0
\end{array}
\] \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=467\)} \\
\hline \multicolumn{6}{|c|}{Cooking paid thru lease} \\
\hline & FIO94 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No Yes & & \[
\begin{array}{r}
10 \\
2
\end{array}
\] & \[
\begin{aligned}
& 83.3 \\
& 16.7
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 12
\end{aligned}
\] & \[
\begin{array}{r}
83.3 \\
100.0
\end{array}
\] \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=467\)} \\
\hline \multicolumn{6}{|c|}{Outdoor Light paid thru lease} \\
\hline & FI095 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 4 & 30.8 & 4 & 30.8 \\
\hline Yes & & 9 & 69.2 & 13 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=466\)} \\
\hline
\end{tabular}


Frequency Missing \(=467\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO99 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 12 & 92.3 & 12 & 92.3 \\
\hline Yes & & 1 & 7.7 & 13 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=466\)} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline & FI120 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 95 & 54.6 & 95 & 54.6 \\
\hline Yes & & 79 & 45.4 & 174 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=305\)} \\
\hline
\end{tabular}

\begin{tabular}{rl} 
OBS & ISO2O \\
1 & BY MEANS OF HIS JOB-ESI ENERGY SY \\
2 & CONTRACTOR \\
3 & TRIBAL GRANT \\
4 & NATIONAL OFFICE \\
5 & NATIONAL OFFICE \\
6 & VARIES, PO WATCHES FOR PROGRAMS \\
7 & NATIONAL OFFICE \\
8 & NATIONAL OFFICE \\
9 & NATIONAL OFFICE \\
10 & NATIONAL OFFICE \\
11 & WORKSHOP IN CONCORD \\
12 & THROUGH A CUSTOMER \\
13 & CLIENT IN THE FIRM NOTIFIED \\
14 & COMPANY SUGESSTED IT \\
15 & TRADE MAGAZINES \\
16 & ELECTRICAL SUPPLIER \\
17 & TRADE MAGAZINES \\
18 & PCIFIC UTILITIESM CONSULTANTS \\
19 & ENERGY MASTERS CO. \\
20 & ENERGY MASTERS CO. \\
21 & ENERGY MASTERS CO. \\
22 & KNEW ABOUT IT \\
23 & ENERGY MASTERS CO. \\
24 & GRAINGER /BILL HEALD \\
25 & GENERAL CONTRACTOR \\
26 & ENERGY MASTERS CO. \\
27 & ENERGY MASTERS CO. \\
28 & GENERAL CONTRACTOR \\
29 & GENERAL CONTRACTOR \\
30 & STATE BULLETEN \\
31 & GENERAL CONTRACTOR \\
32 & STATE BULLETEN \\
33 & GENERAL CONTRACTOR \\
34 & GENERAL CONTRACTOR \\
35 & GENERAL CONTRACTOR \\
36 & ENERGY MASTERS CO. \\
37 & ENERGY MASTERS CO. \\
38 & ENERGY MASTER/ENERGY CONSULTANTS \\
39 & ENERGY MASTERS CO. \\
40 & PG\&E INTERNS (?) \\
41 & ELECTRICIANS RECOMMENDED IT \\
42 & REC'D A FLYER IN MAIL. . \\
43 & PACIFIC ENERGY CENTER \\
44 & PACIFIC ENERGY CENTER \\
45 & DONE AS GENERAL IMPROVEMENT \\
46 & LIGHTBULB SALESPERSON \\
47 & SELL THE LIGHTING EQUIPMENT \\
48 & HE IS PROMOTER OF PROGRAM \\
&
\end{tabular}
HE IS PROMOTER OF PROGRAM

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DS020} & \multicolumn{4}{|c|}{Equipment supply probs} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 40 & 57.1 & 40 & 57.1 \\
\hline 1 & 30 & 42.9 & 70 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=409\)} \\
\hline \multicolumn{5}{|c|}{Contractor delays} \\
\hline DS021 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0
1 & \[
\begin{aligned}
& 57 \\
& 11
\end{aligned}
\] & \[
\begin{aligned}
& 83.8 \\
& 16.2
\end{aligned}
\] & \[
\begin{aligned}
& 57 \\
& 68
\end{aligned}
\] & \[
\begin{array}{r}
83.8 \\
100.0
\end{array}
\] \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=411\)} \\
\hline \multicolumn{5}{|c|}{Financial limitations} \\
\hline DS022 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0
1 & \[
\begin{array}{r}
63 \\
4
\end{array}
\] & \[
\begin{array}{r}
94.0 \\
6.0
\end{array}
\] & \[
\begin{aligned}
& 63 \\
& 67
\end{aligned}
\] & 94.0
100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=412\)} \\
\hline \multicolumn{5}{|c|}{Delays within the organization} \\
\hline DS023 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 60 & 85.7 & 60 & 85.7 \\
\hline 1 & 10 & 14.3 & 70 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=409\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
Decided to spend money on something else \\
DS024 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{ccccc}
\(c\) & Other delay \\
DS025 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 0 & 63 & 88.7 & 63 & 88.7 \\
1 & 8 & 11.3 & 71 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OBS & \multicolumn{4}{|l|}{DS026} \\
\hline & 1 & \multicolumn{4}{|l|}{WEATHER} \\
\hline & 2 & \multicolumn{4}{|l|}{COMMUNICATION PROBLEMS} \\
\hline & 3 & \multicolumn{4}{|l|}{WEATHER} \\
\hline & 4 & \multicolumn{4}{|l|}{COMMUNICATION DELAY} \\
\hline & 5 & \multicolumn{4}{|l|}{WEATHER} \\
\hline & 6 & \multicolumn{4}{|l|}{WEATHER} \\
\hline & 7 & \multicolumn{4}{|l|}{COMPLICATIONS} \\
\hline & 8 & \multicolumn{4}{|l|}{DELIVERY OF EQUIP.} \\
\hline & 9 & \multicolumn{4}{|l|}{REBATES WERE DELAYED 2-3 MONTHS} \\
\hline \multicolumn{6}{|c|}{Weather complications} \\
\hline DS027 & \multicolumn{2}{|l|}{Frequency} & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline \multirow[t]{2}{*}{1} & & 4 & 100.0 & 4 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing \(=475\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline SR080 & Frequency & Percent & Cumulative Cu Frequency & Cumulative Percent \\
\hline No & 45 & 10.1 & 45 & 10.1 \\
\hline Yes & 400 & 89.9 & 445 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 34} \\
\hline \multicolumn{5}{|c|}{Reason for choosing other equipment} \\
\hline SR0 & 0 Frequency & Perce & Cumulative t Frequency & \begin{tabular}{l}
e Cumulative \\
y Percent
\end{tabular} \\
\hline incrs quality & ighting 8 & 17 & 8 & 17.4 \\
\hline elmnat ballst & allout 10 & 21 & 18 & 39.1 \\
\hline other & 12 & 26 & 30 & 65.2 \\
\hline incrs genernal & equip 6 & 13 & 36 & 78.3 \\
\hline cheaper equipm & nt 10 & 21 & 46 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=433\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline EA020 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 41 & 68.3 & 41 & 68.3 \\
\hline 1 & 19 & 31.7 & 60 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=419\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EA021} & \multicolumn{4}{|c|}{Running HVAC less} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 55 & 94.8 & 55 & 94.8 \\
\hline 1 & 3 & 5.2 & 58 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=421\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\multicolumn{5}{c}{ Decreased lighting hours } \\
EA022 & Frequency & Percent & Cumulative & Frequency
\end{tabular}\(\quad\) Percent
\begin{tabular}{ccccc} 
Energy change other1 \\
EA023 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 0 & 27 & 38.0 & 27 & 38.0 \\
1 & 44 & 62.0 & 71 & 100.0 \\
& Frequency Missing \(=408\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline OBS & EA024 \\
\hline 1 & TRYING TO CAREFUL ON USEAGE \\
\hline 2 & NEW METER \\
\hline 3 & REMOVED REFRIGERATION \\
\hline 4 & USING LESS ENERGY \\
\hline 5 & BILL AND USAGE INCREASED \\
\hline 6 & HAD TO ISTALL MORE LIGHTS \\
\hline 7 & MOTION DETECTION \\
\hline 8 & COMP ENERGY MGT SYSTEM \\
\hline 9 & LIGHTS INSTALLED ARE MORE EFFICIEN \\
\hline 10 & INCREASED LIGHTING HOURS \\
\hline 11 & INCREASED LIGHTING HOURS \\
\hline 12 & PUTTING IN NEW LIGHTS \\
\hline 13 & INSTALLED MOYTON SENSORS \\
\hline 14 & INSTALLED SKYLIGHTS \\
\hline 15 & NEW MOTORS ARE NOW EFFICIENT \\
\hline 16 & INSTALLED CONVEYER SYSTEM \\
\hline 17 & MOTION DET. ALOW LESS LIGHT AND TI \\
\hline 18 & MORE LIGHTING HOURS \\
\hline 19 & TIME CLOCKS USED \\
\hline 20 & REDUCED HOURS \\
\hline 21 & TIME CLOCKS USED \\
\hline 22 & TIMERS FOR LIGHT TURN ON \\
\hline 23 & TIME CLOCKS USED \\
\hline 24 & TIME CLOCKS USED \\
\hline 25 & TIME CLOCKS USED \\
\hline 26 & TIME CLOCKS USED \\
\hline 27 & TIME CLOCKS USED \\
\hline 28 & TIME CLOCKS USED \\
\hline 29 & TIME CLOCKS USED \\
\hline 30 & TIME CLOCKS USED \\
\hline 31 & TIME CLOCKS USED \\
\hline 32 & TIME CLOCKS USED \\
\hline 33 & ADDED MORE LIGHTING \\
\hline 34 & MOTION DET. ALOW LESS LIGHT AND TI \\
\hline 35 & TIME CLOCKS USED \\
\hline 36 & INSTALLED AC FOR THE FIRST TIME WH \\
\hline 37 & ENERGY MAN. SYS. INSTALLED \\
\hline 38 & INSTALLED MOYTON SENSORS \\
\hline 39 & MORE ENERGY CONSERVATION \\
\hline 40 & DECREASED UTILITY BILLS \\
\hline 41 & USING MORE LIGHTING HOURS BECAUSE \\
\hline 42 & MORE LIGHTING \\
\hline 43 & CUT DOWN LIGHTING HRS W \({ }^{\text {L }}\) BROODER \\
\hline 44 & INSTALLATION OF OCCUPANCY SENSORS \\
\hline 45 & INSTALLED LESS EFFICIENT REFRIGERA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EA025} & \multicolumn{5}{|c|}{Energy change other2} \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & & 57 & 86.4 & 57 & 86.4 \\
\hline 1 & & 9 & 13.6 & 66 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=413\)} \\
\hline \multicolumn{2}{|r|}{OBS} & \multicolumn{4}{|l|}{EA026} \\
\hline & 1 & \multicolumn{4}{|l|}{" " " NUMBER OF LIGHTS IN USE.} \\
\hline & 2 & \multicolumn{4}{|l|}{INSTALLED TIMERS FOR LIGHTS} \\
\hline & 3 & \multicolumn{4}{|l|}{HEAT/AIR COND. PUT ON AUTOMATIC.} \\
\hline & 4 & \multicolumn{4}{|l|}{LINKED LIGHTS TO MOTION SENSORS} \\
\hline & 5 & \multicolumn{4}{|l|}{ME OF OPER. NEW ELECTRONIC THERM.} \\
\hline & 6 & \multicolumn{4}{|l|}{ME OF OPER. NEW ELECTRONIC THERM.} \\
\hline & 7 & \multicolumn{4}{|l|}{WHEN RETRO WAS DONE} \\
\hline & 8 & \multicolumn{4}{|l|}{OF TIMING OVERLAP W/INCREASING DAY} \\
\hline & 9 & \multicolumn{4}{|l|}{ADDED 16 HVAC UNITS} \\
\hline \multirow[t]{2}{*}{} & 10 & \multicolumn{4}{|l|}{TION} \\
\hline & & \multicolumn{4}{|c|}{Energy change other3} \\
\hline EA027 & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & & 63 & 98.4 & 63 & 98.4 \\
\hline \multirow[t]{2}{*}{1} & & 1 & 1.6 & 64 & 100.0 \\
\hline & & \multicolumn{4}{|c|}{Frequency Missing \(=415\)} \\
\hline
\end{tabular}
\begin{tabular}{rr} 
OBS & EA028 \\
1 & LIGHT
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EA029} & \multicolumn{3}{|r|}{Energy change other4} & \multirow[b]{2}{*}{Cumulative Percent} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 0 & 69 & 98.6 & 69 & 98.6 \\
\hline 1 & 1 & 1.4 & 70 & 100.0 \\
\hline & Fre & ency Miss & \(n g=409\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{OBS} & \multicolumn{2}{|r|}{EA030} & \\
\hline & \multirow[t]{2}{*}{1} & \multicolumn{3}{|l|}{ADDED OTHER EQUIP.} \\
\hline \multicolumn{4}{|c|}{Added equipment} & \\
\hline EA031 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 1 & 5 & 100.0 & 5 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=474\)} \\
\hline
\end{tabular}
\begin{tabular}{cccc}
\(c\) & More hours \\
EA032 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
\hdashline 1 & 7 & 100.0 & 7
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EA033} & \multirow[b]{2}{*}{Frequency} & \multicolumn{3}{|l|}{Control devices} \\
\hline & & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1 & 19 & 100.0 & 19 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=460\)} \\
\hline \multicolumn{5}{|c|}{General conservation} \\
\hline EA045 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1 & 4 & 100.0 & 4 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=475\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PD010 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Get latest tech & 19 & 4.2 & 19 & 4.2 \\
\hline Save \$ on bills & 276 & 60.7 & 295 & 64.8 \\
\hline Get rebate & 37 & 8.1 & 332 & 73.0 \\
\hline Replc old/brokn & 20 & 4.4 & 352 & 77.4 \\
\hline Imprv qual lite & 50 & 11.0 & 402 & 88.4 \\
\hline Help protct environ & 7 & 1.5 & 409 & 89.9 \\
\hline Prev prog expern & 1 & 0.2 & 410 & 90.1 \\
\hline Obtn Advce act r & 1 & 0.2 & 411 & 90.3 \\
\hline Other & 11 & 2.4 & 422 & 92.7 \\
\hline Energy Effiecien & 7 & 1.5 & 429 & 94.3 \\
\hline New Lighting Qua & 13 & 2.9 & 442 & 97.1 \\
\hline Short Payback Pe & 3 & 0.7 & 445 & 97.8 \\
\hline Attractive Finan & 1 & 0.2 & 446 & 98.0 \\
\hline Combination & 9 & 2.0 & 455 & 100.0 \\
\hline
\end{tabular}

Frequency Missing = 24
```

 OBS PD011
 DURIBILITY OF FIXUTRES
 LOOKING FOR TAMPER RESISTENCE EQU
 PAYBACK PERIOD/ MONEY
 GOOOD TIMING NEEDED THE WORK
 EASE OF MAINTENANCE
 COULD PAY W/SAVINGS
 2,3,5
 2,3,5
 HAD ALREADY PURCHASED EQUIP PRIOR
 2,3,5
 2,3,5
 COMBINATION OF 2,3, 6
 HIGHEST RATE OF PAYBACK
 ALL OF THE ABOVE
 COMBINATION 2,4
 UPGRADING TO NEW TECHNOLOGY
 SECURITY
 ENERGY CONSERVATION
 REDUCE HEAT IN THE STORE
 TO LIGHT UP THE LOT
 IT WAS A GOOD SAFETY DECISION
 COST OF INSTALLATION
 BETTER STORE APPEREANCE
 MAKING THE LIGHTING EFFICIENT
 CHEAP INSTALLATION & REBATE
 THE REBATES
 WANTED TO IMPROVE LIGHTING
 SAVE MONEY & HAVE GOOD LIGHTS
 ADVICE FROM PG&E
 MOST RELIABLE EQUIP.
 LOW INTEREST LOAN
 SAVING ENERGY
 LOGEVITY AND QUALITY
 MOST RELIABLE EQUIP.
 LOGEVITY AND QUALITY
 ENERGY EFF.
 ENERGY EFF.
 MORE ENERGY EFFICIENT
 FINANCING & REBATE
 CONFIDENCE IN CONTRACTOR
 RELIABILITY OF THE PRODUCT.
 ENERGY EFFICIENT
 OBTAINING INSTANT START FLOUR.
 OBTAINING INSTANT START FLOUR.
 SAVE MONEY AND IMPROVE LIGHT
 RELIBILITY OF LIGHTING
 QUALITY OF PRODUCT
 HIGHEST RATE OF PAYBACK
 Commercial Program Participants Page H-36 1994 PG\&E Lighting Evaluation

```
\begin{tabular}{lccc} 
Didn't do prior/Lack \$ \\
FR100 Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR101 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 418 & 94.6 & 418 & 94.6 \\
\hline Yes & & 24 & 5.4 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 37} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR102 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 435 & 98.4 & 435 & 98.4 \\
\hline Yes & & 7 & 1.6 & 442 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=37\)
Didn't do prior/unaware about EE light

Frequency Missing \(=37\)

\begin{tabular}{lcccr}
\multicolumn{3}{c}{ Didn't do prior/concern w/ bright } \\
& & & Cumulative & Cumulative \\
FR106 & Frequency & Percent & Frequency & Percent \\
No & 434 & 98.2 & 434 & 98.2 \\
Yes & 8 & 1.8 & 442 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR107 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 437 & 98.9 & 437 & 98.9 \\
\hline Yes & & 5 & 1.1 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 37} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR108 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 440 & 99.3 & 440 & 99.3 \\
\hline Yes & & 3 & 0.7 & 443 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
Didn't do prior/was planning to do \\
& \\
FR109 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
No & 438 & 99.1 & 438
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR110 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 395 & 89.4 & 395 & 89.4 \\
\hline Yes & & 47 & 10.6 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=37\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
& Didn't do prior/just remodeled \\
& & & Cumulative & Cumulative \\
FR111 & Frequency & Percent & Frequency & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR112 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 431 & 97.5 & 431 & 97.5 \\
\hline Yes & & 11 & 2.5 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 37} \\
\hline \multicolumn{6}{|c|}{Didn't do prior/did it \(<5\) years ago} \\
\hline & FR113 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 441 & 100.0 & 441 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=38\)} \\
\hline \multicolumn{6}{|c|}{Didn't do prior/Other specified} \\
\hline & FR114 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 365 & 82.6 & 365 & 82.6 \\
\hline Yes & & 77 & 17.4 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=37\)} \\
\hline
\end{tabular}
```

OBS FR115
1 WAS NOT AT THIS OFFICE YET
INVEST IN ORDER TO SAVE
HADN'T HEARD ABOUT IT
NEEDED TO UPGRADE
NEEDED TO UPGRADE
NEVER HEARD OF IT
LOWERD CEILING SO NEEDED NEW
REPLACING BALLASTS
TOO EXPENSIVE
OTHER SYSTEM WAS OK
NEEDED TO UPGRADE
GOT TIRED OF OLD EQUIPMENT
NEEDED TO UPGRADE
CO. BUERACRACY
IT IS A NEW BUILDING
WOULD NOT BE COST EFFECTIVE
CONCERNED WITH QUALITY OF BA
O
DIDN'T KNOW SHE COULD
1
UNHELPFUL PEOPLE AT OTHER CO
DDID NOT KNOW OF THE PROGRAM
OLD BLDNG,NOT KNOW CAN DO
NEVER HEARD OF PROGRAM
WAS EXPENSIVE AT THE TIME
NEVER THOUGHT ABOUT IT
DIDN'T THINK ABOUT IT
DID NOT KNOW ABOUT PROGRAM
BLDNG TOO OLD
DID NOT OF REBATE
NEVER OFFERED
NOT ENOUGH INCENTIVE/TIME
O
IMPROVEMENT ON IMPROVEMENT
LIGHTING IS DIFFERENT
DID NOT KNOW ABOUT PROGRAM
CONSTANTLY UPDATING FOR EE
DID NOT KNOW ABOUT REBATES
DID NOT KNOW ABOUT PROGRAM
OLD BUILDING AND WASN'T OPT.
HE HAD NEVER HEARD OF IT
CASH FLOW PROBLEM
O
ALWAYS GROUP RELAMP

Didn't do prior/Don't Know				
FR117	Frequency	Percent	Frequency	Cumulative
Percent				

SR020	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	24	7.6	24	7.6
0.5	1	0.3	25	7.9
1	49	15.5	74	23.4
2	36	11.4	110	34.8
3	7	2.2	117	37.0
4	4	1.3	121	38.3
5	16	5.1	137	43.4
7	3	0.9	140	44.3
10	7	2.2	147	46.5
15	4	1.3	151	47.8
20	1	0.3	152	48.1
777	164	51.9	316	100.0
Frequency Missing $=163$				

	How long shopping for equipment?			
FR010	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	336	78.3	336	78.3
1	8	1.9	344	80.2
2	3	0.7	347	80.9
3	2	0.5	349	81.4
4	14	3.3	363	84.6
8	9	2.1	372	86.7
12	8	1.9	380	88.6
13	1	0.2	381	88.8
15	1	0.2	382	89.0
16	1	0.2	383	89.3
20	1	0.2	384	89.5
24	8	1.9	392	91.4
25	1	0.2	393	91.6
32	3	0.7	396	92.3
48	1	0.2	397	92.5
50	1	0.2	398	92.8
52	14	3.3	412	96.0
96	1	0.2	413	96.3
98	1	0.2	414	96.5
100	5	1.2	419	97.7
150	9	2.1	428	99.8
200	1	0.2	429	100.0

	FR011	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	0	95	21.7	95	21.7
	1	105	24.0	200	45.8
	2	85	19.5	285	65.2
	3	116	26.5	401	91.8
	4	22	5.0	423	96.8
	5	3	0.7	426	97.5
	6	3	0.7	429	98.2
	8	1	0.2	430	98.4
	10	3	0.7	433	99.1
	13	1	0.2	434	99.3
	23	2	0.5	436	99.8
	50	1	0.2	437	100.0
Frequency Missing $=42$					
Get est 4 bth high and stand eff lights?					
	FR012	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		335	75.6	335	75.6
Yes		108	24.4	443	100.0
Frequency Missing $=36$					

FR013	Frequency P	Percent ${ }^{\text {Cu }}$	Cumulative Cu Frequency	Cumulative Percent
0	135	31.5	135	31.5
1	47	11.0	182	42.4
2	54	12.6	236	55.0
3	17	4.0	253	59.0
4	58	13.5	311	72.5
5	1	0.2	312	72.7
6	5	1.2	317	73.9
8	41	9.6	358	83.4
9	1	0.2	359	83.7
10	2	0.5	361	84.1
12	19	4.4	380	88.6
16	8	1.9	388	90.4
20	1	0.2	389	90.7
24	7	1.6	396	92.3
26	4	0.9	400	93.2
32	1	0.2	401	93.5
52	26	6.1	427	99.5
70	1	0.2	428	99.8
100	1	0.2	429	100.0
Frequency Missing $=50$				
Delay purchase to participate?				
NG019	9 Frequency	Percent	Cumulative t Frequency	e Cumulative y Percent
No	421	93.1	421	93.1
Yes	31	6.9	452	100.0
Frequency Missing $=27$				

	Plans prior to awareness					
FR020	Frequency	Percent	Cumulative	Frequency	\quad	Cumulative
:---:						
Percent						

FR014	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0.3	1	0.2	1	0.2
1	120	26.6	121	26.8
2	147	32.6	268	59.4
3	67	14.9	335	74.3
4	23	5.1	358	79.4
5	9	2.0	367	81.4
6	25	5.5	392	86.9
7	7	1.6	399	88.5
8	12	2.7	411	91.1
9	3	0.7	414	91.8
10	9	2.0	423	93.8
11	1	0.2	424	94.0
12	7	1.6	431	95.6
15	3	0.7	434	96.2
20	13	2.9	447	99.1
23	1	0.2	448	99.3
25	3	0.7	451	100.0
Frequency Missing = 28				

FR015	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No	192	41.9	192	41.9
Yes	266	58.1	458	100.0
Frequency Missing $=21$				
Job title of final decision maker				
FR016N	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	6	31.6	6	31.6
7	13	68.4	19	100.0
Frequency Missing $=460$				
OBS FR0160TR				
1 BOARD				
2 JOINT DECISION BY COMMIT		T DECISION BY COMMIT		
3 BOARD				
4 BOARD				
5 VP				
6 BOARD				
7 CEO				
8 BOARD				
9 CEO				
10 DON'T KNOW				
11 ?				
12 NONE				
13 CONTROLLER				

$\left.\begin{array}{rrrrr}\text { job title of final decision maker }\end{array}\right]$

c	Group Relamps		
FR118	Frequency	Percent	Cumulative
Frequency	Cumulative	Percent	
1	18	100.0	18

Not Aware of Program				
FR119	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	13	100.0	13	100.0
	Frequency Missing $=466$			

FR120	Frequency	Percent	Cumulative Frequency	Cumulative Percent

Frequency Missing $=479$

FIO65	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Very active	102	51.3	102	51.3
Somewhat active	21	10.6	123	61.8
Slight role	18	9.0	141	70.9
None	58	29.1	199	100.0

	DC012	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		381	86.6	381	86.6
Yes		59	13.4	440	100.0
Frequency Missing = 39					
Financial Criteria/Other					
	DC013	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		416	93.1	416	93.1
Yes		31	6.9	447	100.0
Frequency Missing $=32$					

DC016	Initial cost			
	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	3	100.0	3	100.0
	Frequency Missing $=476$			
		Operating	cost	
DC017	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	2	100.0	2	100.0
	Frequency Missing $=477$			

DC020	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1 yr or <	108	36.1	108	36.1
2 yr or <	80	26.8	188	62.9
3 yr or <	42	14.0	230	76.9
4 yr or <	13	4.3	243	81.3
5 yr or <	26	8.7	269	90.0
7 yr or <	6	2.0	275	92.0
9 yr or <	2	0.7	277	92.6
10 yr or <	13	4.3	290	97.0
Other	9	3.0	299	100.0
Frequency Missing $=180$				

	DC040	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	0	2	11.8	2	11.8
	5	1	5.9	3	17.6
	6	1	5.9	4	23.5
	8	3	17.6	7	41.2
	10	2	11.8	9	52.9
	12	1	5.9	10	58.8
	15	4	23.5	14	82.4
	20	1	5.9	15	88.2
	25	1	5.9	16	94.1
	35	1	5.9	17	100.0
Frequency Missing $=462$					
Use diff financl critera for EE vs other					
	DC050	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		240	63.2	240	63.2
Yes		140	36.8	380	100.0
Frequency Missing = 99					
EE critera high/short or lower/long					
	DC051	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Higher/Shorter Lower/Longer		66	59.5	66	59.5
		45	40.5	111	100.0
Frequency Missing $=368$					

	TR030	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		264	64.9	264	64.9
Yes		143	35.1	407	100.0
Frequency Missing $=72$					
Retorft if 0 rebate/1.5\%<prime financing					
	TR040	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		240	91.3	240	91.3
Yes		23	8.7	263	100.0
Frequency Missing $=216$					

	TR050	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		157	68.6	157	68.6
Yes		72	31.4	229	100.0
Frequency Missing $=250$					

	TR070	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		139	34.2	139	34.2
Yes		268	65.8	407	100.0
Frequency Missing $=72$					

	PR001	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	0	198	45.9	198	45.9
	0.2	1	0.2	199	46.2
	0.5	1	0.2	200	46.4
	1	155	36.0	355	82.4
	2	40	9.3	395	91.6
	3	10	2.3	405	94.0
	4	14	3.2	419	97.2
	5	5	1.2	424	98.4
	6	6	1.4	430	99.8
	7	1	0.2	431	100.0
Frequency Missing $=48$					
time period have contact w/ account rep					
	PR002	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Never		201	45.9	201	45.9
Day		9	2.1	210	47.9
Week		30	6.8	240	54.8
Month		58	13.2	298	68.0
Year		140	32.0	438	100.0
Frequency Missing $=41$					
Someone else have contact w/ acct rep					
	PR005	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		178	88.6	178	88.6
Yes		23	11.4	201	100.0
Frequency Missing $=278$					

	PR010	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	0	1	6.3	1	6.3
	1	2	12.5	3	18.8
	2	10	62.5	13	81.3
	3	2	12.5	15	93.8
	4	1	6.3	16	100.0
Frequency Missing $=463$					
time period othr has contct w/ acct rep					
	PR011	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Month		10	66.7	10	66.7
Frequency Missing $=464$					
Any other services would like					
	PR090	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		308	81.3	308	81.3
Yes		71	18.7	379	100.0
Frequency Missing $=100$					

	PR092	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		339	94.2	339	94.2
Yes		21	5.8	360	100.0
Frequency Missing = 119					
Any other services would like					
	PR0 94	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		330	92.2	330	92.2
Yes		28	7.8	358	100.0
Frequency Missing $=121$					

```
OBS PR091
ENERGY INFO/SAVING UPDATES (NEWSLETTER)
2 LOWER RATES;
3 COME OUT AND CHECK EQUIP. TO SEE IF IT
4 INFORM ABOUT HIGH-TECH EQUIPMENT
5 SEMI ANNUAL REPORT ON EFFECIANCY
6 OTHER IDEAS ON HOW TO SAVE ENERGY
    7 SEMI ANNUAL REPORT ON EFFECIANCY
8 MORE ADVERTISEMENT OF PROGRAMS
9 BETTER SERVICE AND INFORMATION IN
10
1 1
1 2
1 3
14
1 5
1 6
1 7
18
1 9
20
2 1
22
2 3
24
25
26
2 7
28
29
    CLARIFY ENERGY AUDIT SERVICES
    INTERESTED IN PROGRAM FOR HEATING
    INFO RE ELEC USAGE/SQ. FT. HVAC/LIGHTS
    SEMI ANNUAL REPORT ON EFFECIANCY
    QUICKER RESPONSE TO DOWNED WIRES
    SEMI ANNUAL REPORT ON EFFECIANCY
    INTERESTED IN SIMILAR PROGRAM FOR GAS
    RECYCLING
    METERING UPGRADES, OR SUBMETERING
    LOWER RATES
    GET RID OF 800#
    CLOSER MONITORING AND FEEDBACK OF
    MORE INTERFACING W/CUSTOMER
    BETTER ACCESS TO KNOWLEDGE ABOUT POWER
    GOOD TECH. SUPPORT.
    MORE PRE-INSTALL ADVICE ON ENERGY USIN
    WOULD LIKE TO HAVE THE METERS CHECKED
    COMPETITIVE PRICING
    ADVICE ON ELECTRICAL EQUIP (HVAC)
    RE-INSTATE LAST YEARS REBATE
    LOWER RATES
    WOULD LIKE FOR THEM TO CHECK
    MORE DETAILED INFORMATION FROM PG&E
    CONSOLIDATED BILLING FOR SAME LOCATION
    ENGINEERING HELP IN LIGHTING
    GET ELECTRICITY ON QUICKER WHEN IT GOE
    ANNUAL ON-SITE AUDIT
    FREE ELECTRICITY
    GETTING ON SAME STREET CIRCUIT AS
    CONTINUE SAME SERVICE
    ANALYSIS OF WHICH RATE PLAN IS BEST
    CLASSROOM EDUCATION
    MAINTAIN REBATES
    CONTINUE SAME SERVICE
    MORE FREE HELP LIKE THE OLD DADYS
    MORE FREE HELP LIKE THE OLD DADYS
    MORE ON SITE AUDITS
    CONSOLIDATE BILLING FOR ENTIRE DIST.
    BETTER SERVICE OF THEIR AUDIT, OF ALL
    NO ADDITIONAL FEES FOR SUGGESTED WORKS
    LOWER RATES
    WANTS PG&E TO BE ACCOUTABLE FOR MONEY
    KNOW EFFICIENCY OF REFRIDERATION UNITS
    PAY ALITTLE MORE ATTENTION TO CUSTOMER
Commercial Program Participants Page H-61 1994 PG&E Lighting Evaluation
```

OBS	PRO91
54	CHECK VOLTAGE COMING INTO BUILDING
55	KITCHEN MONITOR-BRING IT BACK
56	KITCHEN MONITOR-BRING IT BACK
57	KITCHEN MONITOR-BRING IT BACK
58	KNOWLEDGE OF TIME USE METERS AVAILABLE
59	BETTER BILLING INFO AND BUILDING DATA
60	CHECKING EFFICIENCY
61	MORE PRO-ACTIVE IN CONSERVING ENERGY
62	CONSULTANTION AS TO WHERE TO GET THE E
63	EVALUATE EQUIPMENT FOR RELIABILITY
64	METER ANALYSIS EFFICIENCY RATING OF
65	VISIT BUSINESSES AND OFFER ENERGY
66	ENERGY AUDIT AND EQUIPMENT INFO
67	LESS EXPENSIVE SERVICES
68	CONTINUE REBATE PROGRAM AS IS
69	INFARED TESTING
70	CUSTOME REBATE PROGRAM EASIER TO DEAL
71	MAKE IT EASIER ON BUSINESSES LIKE MINE
OBS	PRO93
1	ENERGY EFFICIENT
2	POWER OUTAGE SITUATIONS
3	AND COOLING
4	IN LAKE COUNTY, IT'S TERRIBLE.
5	POWER USAGE AND RATES
6	OUTAGES
7	DEVICES
8	TO BE SURE SHE'S NOT PAYING FOR
9	CHANGE CLOSING DATE STRUCTURE
10	SYSTEM EFFICIENCY
11	S OUT
12	OTHER BUSINESSES ON THE STREET.
13	KEEP GIVING OUT LITURATURE
14	DETAILS ABOUT THE PROGRAM
15	THEY SPEND
16	AND DOLLAR VALUE TO RUN
17	POWER EFFIENCY.
18	EQUIP TO PROTECT SMALL BUSINESSES
19	AND ANALYSES ENERGY USAGE IN ELECTRONI
20	QUIPMENT, PRICES VARY W/DIFFERENT STOR
21	MAJOR ITEMS FOR REPLACEMENT \& CHANGI G
22	SAVINGS ADVICE
23	PCB TESTING
24	WITH ESPECIALLY IN REFRIGERATION
25	ANDAYA MONOPOLY DO NOT SPLIT UP
5	

OBS	PR095	
1	CHECK THE HOMES FOR INSPECTIONS.	
2	POST INSTALLATION BUG CORRECTION	
3	NEIGHBOR'S ELECTRICITY	
4	BETTER COMMUNICATION ON PROGRAM REQ	
5	CONSOLIDATE BILLS OF ALL BUSINESS.	
6	SMALL BU. EDUCATION OF PROGRAMS	
7	MORE INFO ABOUT RETROFIT PROGRAM	
8	TRAINING IN ELEC. CALCULATIONS.	
9	TRAINING IN ELEC. CALCULATIONS.	
10	TRAINING IN ELEC. CALCULATIONS.	
11	TRAINING IN ELEC. CALCULATIONS.	
12	TRAINING IN ELEC. CALCULATIONS.	
13	TRAINING IN ELEC. CALCULATIONS.	
14	TRAINING IN ELEC. CALCULATIONS.	
15	TRAINING IN ELEC. CALCULATIONS.	
16	TRAINING IN ELEC. CALCULATIONS.	
17	TRAINING IN ELEC. CALCULATIONS.	
18	TRAINING IN ELEC. CALCULATIONS.	
19	TRAINING IN ELEC. CALCULATIONS.	
20	TRAINING IN ELEC. CALCULATIONS.	
21	TRAINING IN ELEC. CALCULATIONS.	
22	TRAINING IN ELEC. CALCULATIONS.	
23	TRAINING IN ELEC. CALCULATIONS.	
24	TRAINING IN ELEC. CALCULATIONS.	
25	TRAINING IN ELEC. CALCULATIONS.	
26	FORMAT	
27	ES	
28	EQUIPMENT DECISIONS	
29	FOLLOW UP ON REBATE PROGRAM	

```
\begin{tabular}{lcccc} 
& Planning any future retrofits
\end{tabular}
                    Frequency Missing = 43
\begin{tabular}{|c|c|c|c|c|}
\hline FR075 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline Standard EE & 3 & 2.0 & 3 & 2.0 \\
\hline High EE & 148 & 98.0 & 151 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=328\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
Future retofit though program? \\
FR077 & Frequency & Percent & Cumulative & Cumulative \\
Frequency & Percent \\
No & 8 & 5.3 & 8 & 5.3 \\
Yes & 144 & 94.7 & 152 & 100.0
\end{tabular}
```


Future Lights/8' T-8				
FR081	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	84	89.4	84	89.4
1	4	4.3	88	93.6
12	2	2.1	90	95.7
60	1	1.1	91	96.8
200	1	1.1	92	97.9
600	1	1.1	93	98.9
1000	1	1.1	94	100.0

FR082	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	87	92.6	87	92.6
9	1	1.1	88	93.6
12	1	1.1	89	94.7
20	1	1.1	90	95.7
30	1	1.1	91	96.8
50	1	1.1	92	97.9
100	2	2.1	94	100.0
Frequency Missing $=385$				
Future Lights/8' ES Fluor				
FR083	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	89	94.7	89	94.7
1	3	3.2	92	97.9
12	1	1.1	93	98.9
344	1	1.1	94	100.0
Frequency Missing $=385$				
Future Lights/4' T-12				
FR084	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	89	96.7	89	96.7
2	1	1.1	90	97.8
4	1	1.1	91	98.9
8	1	1.1	92	100.0
Frequency Missing $=387$				

FR085	Future Lights/8' T-12			
	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	92	97.9	92	97.9
1	1	1.1	93	98.9
9	1	1.1	94	100.0
Frequency Missing = 385				

Future Lights/Incandescent				
FR086	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	90	93.8	90	93.8
4	1	1.0	91	94.8
8	1	1.0	92	95.8
12	2	2.1	94	97.9
75	1	1.0	95	99.0
100	1	1.0	96	100.0

FR087	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	89	89.0	89	89.0
1	3	3.0	92	92.0
10	1	1.0	93	93.0
15	1	1.0	94	94.0
16	1	1.0	95	95.0
72	1	1.0	96	96.0
200	2	2.0	98	98.0
350	1	1.0	99	99.0
1000	1	1.0	100	100.0

FR088	Future Lights/High pres sodium			
	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	87	87.0	87	87.0
1	3	3.0	90	90.0
4	1	1.0	91	91.0
10	1	1.0	92	92.0
12	3	3.0	95	95.0
20	1	1.0	96	96.0
24	1	1.0	97	97.0
30	1	1.0	98	98.0
100	1	1.0	99	99.0
200	1	1.0	100	100.0
	Frequency Missing $=379$			
	Future Lights/Elec Ballasts			
FR089	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	85	88.5	85	88.5
1	1	1.0	86	89.6
10	1	1.0	87	90.6
30	1	1.0	88	91.7
40	1	1.0	89	92.7
120	2	2.1	91	94.8
300	1	1.0	92	95.8
700	1	1.0	93	96.9
1000	3	3.1	96	100.0
	Frequency Missing $=383$			

FR090	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	96	99.0	96	99.0
8	1	1.0	97	100.0
Frequency Missing $=382$				
Future Lights/Metal Halide				
FR091	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	89	91.8	89	91.8
1	1	1.0	90	92.8
4	1	1.0	91	93.8
6	1	1.0	92	94.8
8	1	1.0	93	95.9
12	1	1.0	94	96.9
20	1	1.0	95	97.9
50	1	1.0	96	99.0
63	1	1.0	97	100.0
Frequency Missing $=382$				

Future Lights/Mercury Vapor				
FR092	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	96	94.1	96	94.1
1	1	1.0	97	95.1
20	2	2.0	99	97.1
1000	3	2.9	102	100.0

Future Lights/Quartz						
FR093	Frequency	Percent	Cumulative	Frequency		Cumulative
:---:						
Percent						

Future Lights/Reflectors

FR094	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	98	98.0	98	98.0
5	1	1.0	99	99.0
398	1	1.0	100	100.0
Frequency Missing = 379				

Future Lights/LED Exit Lights			
FR095	Frequency	Percent	Cumulative Frequency
Cumulative	Percent		

FR099R	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	101	100.0	101	100.0
	Frequency Missing $=378$			
	Future Lights/Don't Know			
FR099D	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	98	100.0	98	100.0
	Frequency Missing = 381			
Program satisfaction: 1-7 scale				
DS070	Frequency P	$\begin{array}{lr} & \text { Cumulative } \\ \text { Percent } \quad \text { Frequency } \end{array}$		Cumulative Percent
2	5	1.1	5	1.1
3	7	1.5	12	2.7
4	14	3.1	26	5.8
5	80	17.7	106	23.5
6	152	33.6	258	57.1
7	194	42.9	452	100.0
Frequency Missing $=27$				

Not seeing any bill savings				
DS084	Frequency	Percent	Cumulative	Cumulative
-	Crequency	Percent		

DS086	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	55	84.6	55	84.6
1	10	15.4	65	100.0
Frequency Missing $=414$				

Problems with the contract rep				
DS087	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	59	89.4	59	89.4
1	7	10.6	66	100.0
	Frequency Missing $=413$			

OBS	DS088
1	MORE CONTACT W/ PGE REP
2	THOUGHT IT WAS A "REAL HASSLE"
3	COTRACTER TOOK TO LONG UNRELIABLE.
4	RECIEVED A QUOTE FOR REBATE, BUT FINAL REBATE WAS LESS THAN
5	DIFFICULT DUE TO COMMUNICATION BARRIERS, LOT OF QUESTIONS ASK
6	APPLICATION FORMS ARE CONFUSING
7	NEW LIGHTS INTERFERE W/ INFRA-RED REMOTES AND PG\&E KEEPS
8	GETTING THE REBATE REFUNDED IN A TIMELY MANNER.
9	INCONSISTENCY OF REBATES AND SUPPORT OF PROGRAM
10	PROGRAM DIED BEFORE NEXT INSTALLATION, THERE.
11	BALLASTS ARE DEFECTIVE ON A CONTINUING BASIS.
12	UNHAPPY W/PGE REP HANDLED MISUNDERSTANDING ON CLOSING DATE
13	DIDN'T GET THE FORMS FOR REBATE OUT QUICK ENUOGH, TO THE REPS
14	0
15	LIGHTING COULD BE BRIGHTER
16	AT TIMES IT'S HARD TO KNOW WHERE TO GO TO GET INFO
17	GOT DOUBLE REBATE AMOUNT, HAD TO HAVE OVERAGE SENT BACK.
18	INSUFFICIENT "COVERAGE": TOO MANY RESTRICTIONS.
19	POOR PLANNING AND ATTN. TO DETAIL
20	POOR PLANNING AND ATTN. TO DETAIL
21	POOR PLANNING AND ATTN. TO DETAIL
22	SALES PERSON WAS WRONG ABOUT REPLACEMENT COSTS COST US MONEY
23	POOR SENSOR DOES NOT OPERATE PROPERTY
24	PROBLEM WITH BALLEST
25	POOR PLANNING AND ATTN. TO DETAIL
26	POOR PLANNING AND ATTN. TO DETAIL
27	PROGRAM DEADLINES VERY INCONVENIENT TO FIT WITH INSTALLATION
28	POOR PLANNING AND ATTN. TO DETAIL
29	1 REQUIREMENTS ARE GETTING MORE TECHNICAL.
30	POOR PLANNING AND ATTN. TO DETAIL
31	POOR PLANNING AND ATTN. TO DETAIL
32	20 \% OF THE REBATE NOT YET RECEIVED
33	POOR PLANNING AND ATTN. TO DETAIL
34	OFFER BETTER INFO \& REBATES, RARELY RECEIVE INFO ABOUT RETRIF
35	NEED WORKING SAMPLES TO DEDIDE WHICH WORKS BEST IN A SITUATIO
36	HELP FINDING H. EFF. LIGHTING
37	HELP FINDING H. EFF. LIGHTING
38	PAPER WORK REDUCTION FOR MULTI SITES
39	PAPER WORK REDUCTION FOR MULTI SITES
40	PAPER WORK REDUCTION FOR MULTI SITES
41	TOOK TO LONG TO RECEIVE REBATE.
42	REBATE SHOULD BE STRUCTURED ON BASIS OF ACTUAL ENERGY SAVINGS
43	GET LITTLE INFO ON PROGRAMS
44	0
45	0
46	UNRESPONSIVE
47	REBATE CUTS
48	PROBLEM WITH THE ACCOUNT REP THEY WERE NOT QUITE SURE WHO WAS
49	THE REBATE IS NOT AVAIABLE FOR CERTAIN THINGS THAT HE WANTS
50	GETTING ALOT OF "LEAKY" INFORMATION.ABOUT REBATES BEING CUTT

```
OBS DS089
    QUOTED
    ED FOR PROGRAM DID NOT APPLY TO THE CHURCH SPECIFICALLY.
    SAYING THEY'LL DO SOMETHING---THEN THEY DISAPPEAR
    TIMING
    AND NO LOCAL OFFICE KNOWLEDGE.
    O
    0
    POOR AUDITING WITHIN PG&E ???
    WE NEEDED ADVICE FROM PGE
    SCHEDULE
    IT, ESPECIALLY FOR COMMERCIAL ACCOUNTS
    N; NEEDS WATTAGE HOURS FOR LIGHT AMOUNT AND COST
    NO LOCAL CONTACT
    0
        0
        0
        RESPONSIBLE
        TO DO
    GIVE OUT KNOWLEDGEABLE INFOMATION TO CUSTOMERS.
                        Suggestion for improving program?
\begin{tabular}{lcccc} 
& DS090 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
                            Frequency Missing = 33
\begin{tabular}{|c|c|c|c|c|}
\hline DS091 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 94 & 61.8 & 94 & 61.8 \\
\hline 1 & 58 & 38.2 & 152 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 327} \\
\hline
\end{tabular}
```


Larger Rebates				
DS094	Frequency	Percent	Cumulative	Frequency

c	Smaller Rebates		
DS095	Frequency	Percent	Cumulative
Frequency	Cumulative	Percent	
0	132	100.0	132

DS096	Change Qualifying Measures			
	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	132	98.5	132	98.5
1	2	1.5	134	100.0
Frequency Missing $=345$				
Closer Supervision of Contractors				
DS097	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	120	88.2	120	88.2
1	16	11.8	136	100.0
Frequency Missing $=343$				

```
    OBS DS100
    IMPROVE GENERAL EFFIECIENCY
    MORE EQUIPMENT ADVICE
    OUTREACH IS IMPORTANT ESPECIALLY FOR SMALLER FACILITIES
    1 LESS PAPERWORK
    O
    WOULD LIKE TO SEE OLD FIXTURES REPLACED
    EXTEND TO PROPERTY IN LODI
    BETTER COMMUNICATION ABOUT SUCH PROGRAMS
    MORE INCENTIVES FOR NONPROFIT ORGANIZATIONS, CURRENTLY HAVE
    O
    PG&E SHOULD DROP REBATES BECAUSE IT KEEPS GETTING SMALLER
    PG&E SHOULD DROP REBATES BECAUSE IT KEEPS GETTING SMALLER
    MORE ON SIGHT HELP AND RECOMENDATIONS
    O
    MAKE INFO MORE ACCESSIBLE TO ALL TYPES OF GROUPS
    PG&E SHOULD DROP REBATES BECAUSE IT KEEPS GETTING SMALLER
    MORE GUIDANCE IN EQUIPMENT SELECTION
    PROGRAM MISREPRESENTED IN RELATION TO SAVINGS ATTAINABLE
    MORE PEOPLE DELIVERING MORE INFO TO BUSINESSE
    O
    NEED TO HAV EMORE ADVERTISING FOR THE PROGRAM
    BETTER ADVERTISING TO LET PEOPLE KNOW OF PROGRAM
    O
0
KEEP IT AVAILABLE !!!!!
PG&E SHOULD DROP REBATES BECAUSE IT KEEPS GETTING SMALLER
SIMPLIFY AND LEAVE ROOM FOR FLEXIBILITY IN REBATES
O
MORE TIMELY AND PRECISE INFO
GIVE CUSTOMER TOUR OF ENERY SYSTEM IN SF
PROVIDE BETTER ENGINEERING CRITERA AND SUPPORT, ALCO HIGHE
FOLLOW UP COULD BE A LITTLE BIT STRONGER.
KEEP THE REBATE GOING..THE WAY IT IS
JUST CONTINUE THE PROGRAM
SEND SURVEY BY MAIL
NO ONE TOLD HIM HOW MANY LUMENS ARE NEEDED FOR EVERY SQ. FT.
PAY MORE QUICKLY
BETTER ADVERTISING OF PROGRAM
MORE\BETTER ADVERTISING
WOULD LIKE TO SEE A DEMONSTRATION AREA WHERE PG&E COULD DEMON
MORE INFO ABOUT THE EQUIPMENT ITSELF.
O
0
NO ONE TOLD HIM HOW MANY LUMENS ARE NEEDED FOR EVERY SQ. FT.
PROGRAM DIDN'T STIPULATE CERTAIN LAMP CONFIGURATIONS PRESENT
SHORTEN THE SURVEY
MAINTAIN SAME AMOUNT OF REBATE
O
KEEP IT GOING
BIAX LAMP SHOULD BE INCLUDED IN RETROFIT PACKAGE
GO BACK AND PROVE THAT THE SAVINGS WERE THERE; FOLLOW UP.
WOULD LIKE MORE ENGINEERING ADVICE ON THE RETROFITS.
KEEP IT GOING
```

 OBS DS100
 54 0
 55 0
 56 0
 57 0
 58 0
 59 FIX SENSORS
 60 0
 61 0
 62 KEEP IT GOING
 TIMELY REBATE -- REBATE WAS LATE
 O
 0
 0
 0
 0
 PG&E SHOULD GET MORE INVOLVED IN INFO ABOUT EQUIP. SELECTION
 HAVE PROGRAM RUN ALL YEAR WITHUT CUTOFF DATES
 O
 SPECIFY EQUIPMENT THAT YOU GET REBATES ON
 FORMS CONFUSING NEED TO BE RE-WRITTEN
 BETTER CONTACT W/ENGINEERS WHO CAN ANSWER TECHNICAL QUESTIONS
 CONTRACTOR BROKE LIGHTS LEADING TO BUS. CLOSING, NOT POLITE
 BETTER REBATES FOR COMMERCIAL ACCOUNTS, DIDN'T SAVE MUCH FR
 ANALYSIS OF BEST RETURN FOR PARTICULAR BUILDING
 FOLLOW-UP FROM PG&E AFTER INSTALLATION OF EQUIPMENT, AND
 NOT SURE IF SUGGESTION INVOLVES PG&E AND EFFICIENCY PROGRAM.
 KEP PROGRAMS GOING
 REDUCE RATES
 KEP PROGRAMS GOING
 KEP PROGRAMS GOING
 BRING WORKING SAMPLES
 DON'T CHANGE IT
 MAKE IT EASYER TO APPLY FOR PROGRAMS
 MAKE IT EASYER TO APPLY FOR PROGRAMS
 SURVEY TOO LONG
 CONCENTRATE ON RENDITION AND LOOKS FOR RETAIL
 EDUCATE AS TO WHAT IS AVAILABLE
 CONCENTRATE ON RENDITION AND LOOKS FOR RETAIL
 Commercial Program Participants Page H-80 1994 PG\&E Lighting Evaluation

```
```

OBS DS100
107 CONCENTRATE ON RENDITION AND LOOKS FOR RETAIL
108 PUT THIS SURVEY IN WRITTEN FORM.
109 DON'T REDUCE THE REBATES
110 KEEP IT GOING
111 KEEP PROGRAM IN PLACE AND EXPAND; REBATES EXCELLANT WAY TO GO
112 FASTER RECEIPT OF REBATE CHECKS
113 0
1 1 4 ~ S H O W R O O M ~ T O ~ S E E ~ A L L ~ Y O U R ~ O P T I O N S ~ \& ~ F I X T U R E S ~ T H A T ~ W O U L D ~ B E ~
115 BETTER CONTACT WITH REP
116 REBATE IS GOOD INCENTIVE
117 0
118 SOME REBATES ARE NOT APPLICABLE TO ENCOURAGE PPL TO USE HIGH
119 BETTER TRAINED EMPLOYEES
120 MORE ENGINEERING SUPPORT. BETTER STATISTICS ON PAYBACK PERIOD
121 GO BACK TO THE 1991 REBATE PROGRAM
122 LARGER PARTICIPATION IN HELPING COMPANIES SELLECT EQUIPMENT
123 MAKE THE PROGRAM MORE FLEXIBLE
124 1

```
```

OBS DS101
O
PRIVATE CONTRACTOR \& HAVE HAD COMMUNICATION DIFFICULTY
O
0
0
0
0
0
R REBATES
STRATE RELATIVE LIGHTING
0
0
IN THE MARKET PLACE, MAKING THE RETROFIT A HASSLE
O
0
0
0
0
0
0
0
0
0
0
0
[G\&E COULD GIVE UNBIASED OPINION, CONTRACTORS ARE PROFIT MOTI
O
OM PROGRAM, NOT MUCH IMPROVEMENT SEEN, NOT DOING MUCH FOR THE
PROOF OF SAVINGS.
O
COMPATIABLE W/OLD BULIDINGS
0
EFFICIENCY PRODUCTS
O
0
ADVERTISE TO COMPANIES BETTER

```
\begin{tabular}{|c|c|}
\hline OBS & DS102 \\
\hline 1 & 0 \\
\hline 2 & 0 \\
\hline 3 & 0 \\
\hline 4 & 0 \\
\hline 5 & 0 \\
\hline 6 & 0 \\
\hline 7 & 0 \\
\hline 8 & 0 \\
\hline 9 & 0 \\
\hline 10 & 0 \\
\hline 11 & 0 \\
\hline 12 & 0 \\
\hline 13 & 0 \\
\hline 14 & 0 \\
\hline 15 & 0 \\
\hline 16 & 0 \\
\hline 17 & 0 \\
\hline 18 & 0 \\
\hline 19 & 0 \\
\hline 20 & 0 \\
\hline 21 & 0 \\
\hline 22 & 0 \\
\hline 23 & VATED \\
\hline 24 & 0 \\
\hline 25 & M, WASN'T WORTH THE MONEY, BILL STILL TOO HIGH \\
\hline 26 & 1 \\
\hline 27 & 0 \\
\hline 28 & 0 \\
\hline 29 & 0 \\
\hline 30 & 0 \\
\hline
\end{tabular}



\begin{tabular}{ll} 
OBS & BCOI2 \\
107 & AMUSEMENT PARK \\
108 & CAR WASH \\
109 & COURT REPORTING \\
110 & SERVICE DONE IN CUST'S HOME \\
111 & FILM PROCESSING \\
112 & RENTAL 4 UNIFORMS \\
113 & BOWLING CENTER \\
114 & VEGETABLE SEED PRODUCTION COMP. \\
115 & PACKAGE DISTRIBUTION \\
116 & EDUCATION \\
117 & CHURCH OFFICES AND PRESCHOOL. \\
118 & LIQUOR STORE \\
119 & WINERY \\
120 & LIQUOR STORE \\
121 & RETAIL, FOOD \\
122 & DENTAL OFFICE \\
123 & DENTISTRY \\
124 & ATHLETIC GYM \\
125 & HEALTH CLUB \\
126 & HEALTH CLUB \\
127 & PHYSICIAN OFFICES \\
128 & GOLF COURSE \\
129 & TENNIS CLUB \\
130 & HEALTH CLUB \\
131 & AUTO REPAIRS \\
132 & SALES AND SERVICE \\
133 & SELF STORAGE \\
134 & ELECTRICAL WHOLESALE SUPPLY \\
135 & WHOLESALE \\
136 & INDIVIDUAL SELF STORAGE UNITS \\
137 & MULTIPLE USES \\
138 & TRCATOR SALES REPAIRS \\
139 & WINE STORAGE WAREHOUSE \\
140 & ELECTRICAL DATA WHOLESALE \\
141 & WHOLE SALE DISTRIBUTER \\
142 & SELL SEMI CUNDUCTER MAN. EQUIP. \\
143 & OCF FACILITY AND WAREHOUSING \\
144 & CD\&TAPE DISTRIBUTOR \\
10
\end{tabular}


Univariate Procedure
Variable=FC080
Square footage/floor of facility
Moments
\begin{tabular}{lrlr} 
N & 390 & Sum Wgts & 390 \\
Mean & 23646.08 & Sum & 9221970 \\
Std Dev & 48154.68 & Variance & 2.3189 E 9 \\
Skewness & 5.673287 & Kurtosis & 42.98696 \\
USS & \(1.12 E 12\) & CSS & 9.02 E 11 \\
CV & 203.6477 & Std Mean & 2438.407 \\
T:Mean \(=0\) & 9.697345 & Pr> \(>|T|\) & 0.0001 \\
Num \(\wedge=0\) & 390 & Num \(\rangle\) & 390 \\
M(Sign) & 195 & Pr \(>=|M|\) & 0.0001 \\
Sgn Rank & 38122.5 & Pr \(>=|S|\) & 0.0001
\end{tabular}
\begin{tabular}{crrr}
\multicolumn{4}{c}{ Quantiles(Def=5) } \\
100\% Max & 520539 & \(99 \%\) & 263000 \\
\(75 \%\) Q3 & 26976 & \(95 \%\) & 85000 \\
\(50 \%\) Med & 8000 & \(90 \%\) & 46750 \\
\(25 \%\) Q1 & 3000 & \(10 \%\) & 1500 \\
0\% Min & 45 & \(5 \%\) & 1000 \\
& & \(1 \%\) & 416 \\
Range & 520494 & & \\
Q3-Q1 & 23976 & & \\
Mode & 5000 & &
\end{tabular}

Extremes
\begin{tabular}{rrrr} 
Lowest & \multicolumn{1}{l}{ Obs } & Highest & Obs \\
\(45(\) & \(39)\) & \(216000(\) & \(450)\) \\
\(161(\) & \(376)\) & \(263000(\) & \(246)\) \\
\(300(\) & \(23)\) & \(299968(\) & \(288)\) \\
\(416(\) & \(373)\) & \(393299(\) & \(291)\) \\
\(500(\) & \(151)\) & \(520539(\) & \(272)\)
\end{tabular}
\begin{tabular}{lr} 
Missing Value & D \\
Count & 61 \\
\% Count/Nobs & 13.53
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FC081 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 27 & 6.1 & 27 & 6.1 \\
\hline 1 & 4 & 0.9 & 31 & 7.0 \\
\hline 2 & 1 & 0.2 & 32 & 7.2 \\
\hline 3 & 1 & 0.2 & 33 & 7.4 \\
\hline 5 & 2 & 0.5 & 35 & 7.9 \\
\hline 6 & 1 & 0.2 & 36 & 8.1 \\
\hline 9 & 2 & 0.5 & 38 & 8.6 \\
\hline 10 & 3 & 0.7 & 41 & 9.3 \\
\hline 15 & 3 & 0.7 & 44 & 9.9 \\
\hline 20 & 7 & 1.6 & 51 & 11.5 \\
\hline 25 & 7 & 1.6 & 58 & 13.1 \\
\hline 30 & 2 & 0.5 & 60 & 13.5 \\
\hline 35 & 1 & 0.2 & 61 & 13.8 \\
\hline 40 & 1 & 0.2 & 62 & 14.0 \\
\hline 45 & 1 & 0.2 & 63 & 14.2 \\
\hline 50 & 14 & 3.2 & 77 & 17.4 \\
\hline 57 & 1 & 0.2 & 78 & 17.6 \\
\hline 60 & 4 & 0.9 & 82 & 18.5 \\
\hline 65 & 5 & 1.1 & 87 & 19.6 \\
\hline 66 & 3 & 0.7 & 90 & 20.3 \\
\hline 70 & 7 & 1.6 & 97 & 21.9 \\
\hline 75 & 13 & 2.9 & 110 & 24.8 \\
\hline 80 & 8 & 1.8 & 118 & 26.6 \\
\hline 85 & 2 & 0.5 & 120 & 27.1 \\
\hline 90 & 18 & 4.1 & 138 & 31.2 \\
\hline 95 & 7 & 1.6 & 145 & 32.7 \\
\hline 97 & 1 & 0.2 & 146 & 33.0 \\
\hline 98 & 3 & 0.7 & 149 & 33.6 \\
\hline 99 & 2 & 0.5 & 151 & 34.1 \\
\hline 100 & 289 & 65.2 & 440 & 99.3 \\
\hline 800 & 1 & 0.2 & 441 & 99.5 \\
\hline 3500 & 1 & 0.2 & 442 & 99.8 \\
\hline 30000 & 1 & 0.2 & 443 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=36\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FC095 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 71 & 15.9 & 71 & 15.9 \\
\hline 1 & 344 & 77.0 & 415 & 92.8 \\
\hline 2 & 32 & 7.2 & 447 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 32} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FC100 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 6 & 16.2 & 6 & 16.2 \\
\hline 3 & 1 & 2.7 & 7 & 18.9 \\
\hline 5 & 1 & 2.7 & 8 & 21.6 \\
\hline 15 & 2 & 5.4 & 10 & 27.0 \\
\hline 20 & 1 & 2.7 & 11 & 29.7 \\
\hline 25 & 1 & 2.7 & 12 & 32.4 \\
\hline 33 & 1 & 2.7 & 13 & 35.1 \\
\hline 50 & 5 & 13.5 & 18 & 48.6 \\
\hline 60 & 2 & 5.4 & 20 & 54.1 \\
\hline 70 & 2 & 5.4 & 22 & 59.5 \\
\hline 75 & 2 & 5.4 & 24 & 64.9 \\
\hline 80 & 4 & 10.8 & 28 & 75.7 \\
\hline 90 & 2 & 5.4 & 30 & 81.1 \\
\hline 95 & 1 & 2.7 & 31 & 83.8 \\
\hline 99 & 3 & 8.1 & 34 & 91.9 \\
\hline 100 & 3 & 8.1 & 37 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=442\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FC110 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Increasd space & 46 & 10.3 & 46 & 10.3 \\
\hline Decreasd space & 2 & 0.4 & 48 & 10.8 \\
\hline Stayed same & 397 & 89.2 & 445 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 34} \\
\hline \multicolumn{5}{|c|}{Area of size change} \\
\hline FC120 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 1 & 1.9 & 1 & 1.9 \\
\hline 1 & 5 & 9.4 & 6 & 11.3 \\
\hline 150 & 1 & 1.9 & 7 & 13.2 \\
\hline 350 & 1 & 1.9 & 8 & 15.1 \\
\hline 450 & 1 & 1.9 & 9 & 17.0 \\
\hline 700 & 1 & 1.9 & 10 & 18.9 \\
\hline 800 & 1 & 1.9 & 11 & 20.8 \\
\hline 1000 & 2 & 3.8 & 13 & 24.5 \\
\hline 1200 & 1 & 1.9 & 14 & 26.4 \\
\hline 1600 & 1 & 1.9 & 15 & 28.3 \\
\hline 1800 & 1 & 1.9 & 16 & 30.2 \\
\hline 2000 & 14 & 26.4 & 30 & 56.6 \\
\hline 2500 & 1 & 1.9 & 31 & 58.5 \\
\hline 3000 & 3 & 5.7 & 34 & 64.2 \\
\hline 3500 & 3 & 5.7 & 37 & 69.8 \\
\hline 4000 & 8 & 15.1 & 45 & 84.9 \\
\hline 5000 & 2 & 3.8 & 47 & 88.7 \\
\hline 5800 & 1 & 1.9 & 48 & 90.6 \\
\hline 6000 & 1 & 1.9 & 49 & 92.5 \\
\hline 7000 & 3 & 5.7 & 52 & 98.1 \\
\hline 10000 & 1 & 1.9 & 53 & 100.0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline FC140 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline OCT1992 & 1 & 5.0 & 1 & 5.0 \\
\hline NOV1992 & 1 & 5.0 & 2 & 10.0 \\
\hline AUG1993 & 1 & 5.0 & 3 & 15.0 \\
\hline SEP1993 & 2 & 10.0 & 5 & 25.0 \\
\hline FEB1994 & 2 & 10.0 & 7 & 35.0 \\
\hline APR1994 & 2 & 10.0 & 9 & 45.0 \\
\hline MAY1994 & 1 & 5.0 & 10 & 50.0 \\
\hline JUN1994 & 2 & 10.0 & 12 & 60.0 \\
\hline JUL1994 & 1 & 5.0 & 13 & 65.0 \\
\hline AUG1994 & 1 & 5.0 & 14 & 70.0 \\
\hline SEP1994 & 1 & 5.0 & 15 & 75.0 \\
\hline NOV1994 & 1 & 5.0 & 16 & 80.0 \\
\hline DEC1994 & 1 & 5.0 & 17 & 85.0 \\
\hline JAN1995 & 1 & 5.0 & 18 & 90.0 \\
\hline APR1995 & 1 & 5.0 & 19 & 95.0 \\
\hline JUN1995 & 1 & 5.0 & 20 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=459\)} \\
\hline \multicolumn{5}{|c|}{Year of area increase occupied} \\
\hline FC141 & Frequency & Percent & \begin{tabular}{l}
Cumulative \\
t Frequency
\end{tabular} & Cumulative Percent \\
\hline 1992 & 6 & 20.0 & 6 & 20.0 \\
\hline 1993 & 21 & 70.0 & 27 & 90.0 \\
\hline 1994 & 3 & 10.0 & 30 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=449\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline FR034 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 1 & 0.3 & 1 & 0.3 \\
\hline Never remodled & 204 & 61.8 & 205 & 62.1 \\
\hline 1955 & 1 & 0.3 & 206 & 62.4 \\
\hline 1960 & 1 & 0.3 & 207 & 62.7 \\
\hline 1961 & 1 & 0.3 & 208 & 63.0 \\
\hline 1964 & 1 & 0.3 & 209 & 63.3 \\
\hline 1965 & 3 & 0.9 & 212 & 64.2 \\
\hline 1967 & 1 & 0.3 & 213 & 64.5 \\
\hline 1970 & 1 & 0.3 & 214 & 64.8 \\
\hline 1972 & 1 & 0.3 & 215 & 65.2 \\
\hline 1974 & 2 & 0.6 & 217 & 65.8 \\
\hline 1976 & 1 & 0.3 & 218 & 66.1 \\
\hline 1979 & 2 & 0.6 & 220 & 66.7 \\
\hline 1980 & 9 & 2.7 & 229 & 69.4 \\
\hline 1981 & 3 & 0.9 & 232 & 70.3 \\
\hline 1983 & 1 & 0.3 & 233 & 70.6 \\
\hline 1984 & 2 & 0.6 & 235 & 71.2 \\
\hline 1985 & 3 & 0.9 & 238 & 72.1 \\
\hline 1986 & 3 & 0.9 & 241 & 73.0 \\
\hline 1987 & 5 & 1.5 & 246 & 74.5 \\
\hline 1988 & 7 & 2.1 & 253 & 76.7 \\
\hline 1989 & 9 & 2.7 & 262 & 79.4 \\
\hline 1990 & 15 & 4.5 & 277 & 83.9 \\
\hline 1991 & 12 & 3.6 & 289 & 87.6 \\
\hline 1992 & 13 & 3.9 & 302 & 91.5 \\
\hline 1993 & 6 & 1.8 & 308 & 93.3 \\
\hline 1994 & 17 & 5.2 & 325 & 98.5 \\
\hline 1995 & 5 & 1.5 & 330 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR035 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 42 & 22.2 & 42 & 22.2 \\
\hline Yes & & 147 & 77.8 & 189 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=290\)} \\
\hline
\end{tabular}
\begin{tabular}{crrrr} 
Weekdays per year closed for holidays \\
& & & \\
LF030 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF040 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 169 & 44.7 & 169 & 44.7 \\
\hline 1 & 7 & 1.9 & 176 & 46.6 \\
\hline 2 & 26 & 6.9 & 202 & 53.4 \\
\hline 3 & 6 & 1.6 & 208 & 55.0 \\
\hline 4 & 3 & 0.8 & 211 & 55.8 \\
\hline 5 & 2 & 0.5 & 213 & 56.3 \\
\hline 6 & 3 & 0.8 & 216 & 57.1 \\
\hline 7 & 2 & 0.5 & 218 & 57.7 \\
\hline 9 & 1 & 0.3 & 219 & 57.9 \\
\hline 10 & 1 & 0.3 & 220 & 58.2 \\
\hline 11 & 1 & 0.3 & 221 & 58.5 \\
\hline 12 & 2 & 0.5 & 223 & 59.0 \\
\hline 13 & 1 & 0.3 & 224 & 59.3 \\
\hline 14 & 1 & 0.3 & 225 & 59.5 \\
\hline 20 & 1 & 0.3 & 226 & 59.8 \\
\hline 25 & 2 & 0.5 & 228 & 60.3 \\
\hline 32 & 1 & 0.3 & 229 & 60.6 \\
\hline 36 & 1 & 0.3 & 230 & 60.8 \\
\hline 48 & 1 & 0.3 & 231 & 61.1 \\
\hline 50 & 1 & 0.3 & 232 & 61.4 \\
\hline 52 & 6 & 1.6 & 238 & 63.0 \\
\hline Never open & 140 & 37.0 & 378 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF050 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 144 & 36.5 & 144 & 36.5 \\
\hline 1 & 9 & 2.3 & 153 & 38.8 \\
\hline 2 & 10 & 2.5 & 163 & 41.4 \\
\hline 3 & 1 & 0.3 & 164 & 41.6 \\
\hline 5 & 1 & 0.3 & 165 & 41.9 \\
\hline 6 & 1 & 0.3 & 166 & 42.1 \\
\hline 7 & 1 & 0.3 & 167 & 42.4 \\
\hline 9 & 1 & 0.3 & 168 & 42.6 \\
\hline 10 & 2 & 0.5 & 170 & 43.1 \\
\hline 11 & 1 & 0.3 & 171 & 43.4 \\
\hline 12 & 2 & 0.5 & 173 & 43.9 \\
\hline 45 & 1 & 0.3 & 174 & 44.2 \\
\hline 52 & 6 & 1.5 & 180 & 45.7 \\
\hline Never open & 214 & 54.3 & 394 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=85\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & BH010 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 308 & 67.2 & 308 & 67.2 \\
\hline Yes & & 150 & 32.8 & 458 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 21} \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Aware of lighting hours \\
BH015 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Yes & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF1F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 49 & 10.5 & 49 & 10.5 \\
\hline 4:00 & 4 & 0.9 & 53 & 11.3 \\
\hline 4:30 & 2 & 0.4 & 55 & 11.8 \\
\hline 5:00 & 9 & 1.9 & 64 & 13.7 \\
\hline 5:15 & 1 & 0.2 & 65 & 13.9 \\
\hline 5:30 & 5 & 1.1 & 70 & 15.0 \\
\hline 5:45 & 1 & 0.2 & 71 & 15.2 \\
\hline 6:00 & 47 & 10.0 & 118 & 25.2 \\
\hline 6:30 & 17 & 3.6 & 135 & 28.8 \\
\hline 7:00 & 79 & 16.9 & 214 & 45.7 \\
\hline 7:30 & 41 & 8.8 & 255 & 54.5 \\
\hline 7:45 & 1 & 0.2 & 256 & 54.7 \\
\hline 8:00 & 108 & 23.1 & 364 & 77.8 \\
\hline 8:15 & 1 & 0.2 & 365 & 78.0 \\
\hline 8:30 & 17 & 3.6 & 382 & 81.6 \\
\hline 9:00 & 52 & 11.1 & 434 & 92.7 \\
\hline 9:30 & 7 & 1.5 & 441 & 94.2 \\
\hline 10:00 & 14 & 3.0 & 455 & 97.2 \\
\hline 10:30 & 1 & 0.2 & 456 & 97.4 \\
\hline 11:00 & 5 & 1.1 & 461 & 98.5 \\
\hline 12:00 & 1 & 0.2 & 462 & 98.7 \\
\hline 16:00 & 2 & 0.4 & 464 & 99.1 \\
\hline 16:30 & 1 & 0.2 & 465 & 99.4 \\
\hline 17:00 & 2 & 0.4 & 467 & 99.8 \\
\hline 19:00 & 1 & 0.2 & 468 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 11} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF2F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 227 & 48.9 & 227 & 48.9 \\
\hline 4:00 & 1 & 0.2 & 228 & 49.1 \\
\hline 4:30 & 1 & 0.2 & 229 & 49.4 \\
\hline 5:00 & 8 & 1.7 & 237 & 51.1 \\
\hline 5:15 & 1 & 0.2 & 238 & 51.3 \\
\hline 5:30 & 1 & 0.2 & 239 & 51.5 \\
\hline 6:00 & 30 & 6.5 & 269 & 58.0 \\
\hline 6:30 & 2 & 0.4 & 271 & 58.4 \\
\hline 7:00 & 19 & 4.1 & 290 & 62.5 \\
\hline 7:30 & 15 & 3.2 & 305 & 65.7 \\
\hline 7:45 & 1 & 0.2 & 306 & 65.9 \\
\hline 8:00 & 55 & 11.9 & 361 & 77.8 \\
\hline 8:30 & 5 & 1.1 & 366 & 78.9 \\
\hline 8:45 & 1 & 0.2 & 367 & 79.1 \\
\hline 9:00 & 52 & 11.2 & 419 & 90.3 \\
\hline 9:30 & 4 & 0.9 & 423 & 91.2 \\
\hline 10:00 & 25 & 5.4 & 448 & 96.6 \\
\hline 11:00 & 5 & 1.1 & 453 & 97.6 \\
\hline 11:30 & 1 & 0.2 & 454 & 97.8 \\
\hline 12:00 & 1 & 0.2 & 455 & 98.1 \\
\hline 13:00 & 1 & 0.2 & 456 & 98.3 \\
\hline 14:00 & 1 & 0.2 & 457 & 98.5 \\
\hline 16:00 & 2 & 0.4 & 459 & 98.9 \\
\hline 16:30 & 1 & 0.2 & 460 & 99.1 \\
\hline 17:00 & 2 & 0.4 & 462 & 99.6 \\
\hline 17:30 & 1 & 0.2 & 463 & 99.8 \\
\hline 20:00 & 1 & 0.2 & 464 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=15\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF3F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 314 & 67.5 & 314 & 67.5 \\
\hline 4:00 & 1 & 0.2 & 315 & 67.7 \\
\hline 4:30 & 1 & 0.2 & 316 & 68.0 \\
\hline 5:00 & 3 & 0.6 & 319 & 68.6 \\
\hline 5:30 & 1 & 0.2 & 320 & 68.8 \\
\hline 6:00 & 23 & 4.9 & 343 & 73.8 \\
\hline 6:30 & 2 & 0.4 & 345 & 74.2 \\
\hline 7:00 & 10 & 2.2 & 355 & 76.3 \\
\hline 7:30 & 5 & 1.1 & 360 & 77.4 \\
\hline 8:00 & 35 & 7.5 & 395 & 84.9 \\
\hline 8:30 & 2 & 0.4 & 397 & 85.4 \\
\hline 9:00 & 21 & 4.5 & 418 & 89.9 \\
\hline 9:30 & 1 & 0.2 & 419 & 90.1 \\
\hline 10:00 & 18 & 3.9 & 437 & 94.0 \\
\hline 10:30 & 2 & 0.4 & 439 & 94.4 \\
\hline 11:00 & 14 & 3.0 & 453 & 97.4 \\
\hline 11:30 & 1 & 0.2 & 454 & 97.6 \\
\hline 12:00 & 4 & 0.9 & 458 & 98.5 \\
\hline 13:00 & 2 & 0.4 & 460 & 98.9 \\
\hline 16:00 & 2 & 0.4 & 462 & 99.4 \\
\hline 16:30 & 1 & 0.2 & 463 & 99.6 \\
\hline 17:00 & 1 & 0.2 & 464 & 99.8 \\
\hline 20:00 & 1 & 0.2 & 465 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 14} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 4F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 48 & 10.5 & 48 & 10.5 \\
\hline 4:00 & 4 & 0.9 & 52 & 11.3 \\
\hline 4:30 & 1 & 0.2 & 53 & 11.5 \\
\hline 5:00 & 10 & 2.2 & 63 & 13.7 \\
\hline 5:15 & 1 & 0.2 & 64 & 13.9 \\
\hline 5:30 & 5 & 1.1 & 69 & 15.0 \\
\hline 5:45 & 1 & 0.2 & 70 & 15.3 \\
\hline 6:00 & 50 & 10.9 & 120 & 26.1 \\
\hline 6:30 & 16 & 3.5 & 136 & 29.6 \\
\hline 7:00 & 79 & 17.2 & 215 & 46.8 \\
\hline 7:30 & 39 & 8.5 & 254 & 55.3 \\
\hline 7:45 & 1 & 0.2 & 255 & 55.6 \\
\hline 8:00 & 103 & 22.4 & 358 & 78.0 \\
\hline 8:15 & 1 & 0.2 & 359 & 78.2 \\
\hline 8:30 & 17 & 3.7 & 376 & 81.9 \\
\hline 9:00 & 49 & 10.7 & 425 & 92.6 \\
\hline 9:30 & 7 & 1.5 & 432 & 94.1 \\
\hline 10:00 & 16 & 3.5 & 448 & 97.6 \\
\hline 10:30 & 1 & 0.2 & 449 & 97.8 \\
\hline 11:00 & 4 & 0.9 & 453 & 98.7 \\
\hline 12:00 & 1 & 0.2 & 454 & 98.9 \\
\hline 16:00 & 1 & 0.2 & 455 & 99.1 \\
\hline 17:00 & 1 & 0.2 & 456 & 99.3 \\
\hline 19:00 & 3 & 0.7 & 459 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=20\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF5F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 219 & 48.0 & 219 & 48.0 \\
\hline 4:00 & 1 & 0.2 & 220 & 48.2 \\
\hline 5:00 & 9 & 2.0 & 229 & 50.2 \\
\hline 5:15 & 1 & 0.2 & 230 & 50.4 \\
\hline 5:30 & 1 & 0.2 & 231 & 50.7 \\
\hline 6:00 & 32 & 7.0 & 263 & 57.7 \\
\hline 6:30 & 1 & 0.2 & 264 & 57.9 \\
\hline 7:00 & 22 & 4.8 & 286 & 62.7 \\
\hline 7:30 & 15 & 3.3 & 301 & 66.0 \\
\hline 7:45 & 1 & 0.2 & 302 & 66.2 \\
\hline 8:00 & 54 & 11.8 & 356 & 78.1 \\
\hline 8:30 & 5 & 1.1 & 361 & 79.2 \\
\hline 8:45 & 1 & 0.2 & 362 & 79.4 \\
\hline 9:00 & 50 & 11.0 & 412 & 90.4 \\
\hline 9:30 & 4 & 0.9 & 416 & 91.2 \\
\hline 10:00 & 26 & 5.7 & 442 & 96.9 \\
\hline 11:00 & 4 & 0.9 & 446 & 97.8 \\
\hline 11:30 & 1 & 0.2 & 447 & 98.0 \\
\hline 12:00 & 1 & 0.2 & 448 & 98.2 \\
\hline 13:00 & 1 & 0.2 & 449 & 98.5 \\
\hline 14:00 & 1 & 0.2 & 450 & 98.7 \\
\hline 16:00 & 1 & 0.2 & 451 & 98.9 \\
\hline 17:00 & 1 & 0.2 & 452 & 99.1 \\
\hline 17:30 & 1 & 0.2 & 453 & 99.3 \\
\hline 19:00 & 2 & 0.4 & 455 & 99.8 \\
\hline 20:00 & 1 & 0.2 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 23} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 6F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 303 & 66.6 & 303 & 66.6 \\
\hline 4:00 & 1 & 0.2 & 304 & 66.8 \\
\hline 5:00 & 4 & 0.9 & 308 & 67.7 \\
\hline 5:30 & 1 & 0.2 & 309 & 67.9 \\
\hline 6:00 & 29 & 6.4 & 338 & 74.3 \\
\hline 6:30 & 1 & 0.2 & 339 & 74.5 \\
\hline 7:00 & 11 & 2.4 & 350 & 76.9 \\
\hline 7:30 & 6 & 1.3 & 356 & 78.2 \\
\hline 8:00 & 30 & 6.6 & 386 & 84.8 \\
\hline 8:30 & 2 & 0.4 & 388 & 85.3 \\
\hline 9:00 & 24 & 5.3 & 412 & 90.5 \\
\hline 9:30 & 1 & 0.2 & 413 & 90.8 \\
\hline 10:00 & 16 & 3.5 & 429 & 94.3 \\
\hline 10:30 & 2 & 0.4 & 431 & 94.7 \\
\hline 11:00 & 14 & 3.1 & 445 & 97.8 \\
\hline 11:30 & 1 & 0.2 & 446 & 98.0 \\
\hline 12:00 & 3 & 0.7 & 449 & 98.7 \\
\hline 13:00 & 2 & 0.4 & 451 & 99.1 \\
\hline 16:00 & 1 & 0.2 & 452 & 99.3 \\
\hline 19:00 & 2 & 0.4 & 454 & 99.8 \\
\hline 20:00 & 1 & 0.2 & 455 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=24\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF7F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 79 & 17.3 & 79 & 17.3 \\
\hline 4:00 & 4 & 0.9 & 83 & 18.2 \\
\hline 4:30 & 2 & 0.4 & 85 & 18.6 \\
\hline 5:00 & 10 & 2.2 & 95 & 20.8 \\
\hline 5:15 & 1 & 0.2 & 96 & 21.1 \\
\hline 5:30 & 5 & 1.1 & 101 & 22.1 \\
\hline 5:45 & 1 & 0.2 & 102 & 22.4 \\
\hline 6:00 & 47 & 10.3 & 149 & 32.7 \\
\hline 6:30 & 7 & 1.5 & 156 & 34.2 \\
\hline 7:00 & 63 & 13.8 & 219 & 48.0 \\
\hline 7:30 & 39 & 8.6 & 258 & 56.6 \\
\hline 7:45 & 1 & 0.2 & 259 & 56.8 \\
\hline 8:00 & 93 & 20.4 & 352 & 77.2 \\
\hline 8:15 & 1 & 0.2 & 353 & 77.4 \\
\hline 8:30 & 18 & 3.9 & 371 & 81.4 \\
\hline 9:00 & 51 & 11.2 & 422 & 92.5 \\
\hline 9:30 & 7 & 1.5 & 429 & 94.1 \\
\hline 10:00 & 16 & 3.5 & 445 & 97.6 \\
\hline 10:30 & 1 & 0.2 & 446 & 97.8 \\
\hline 11:00 & 3 & 0.7 & 449 & 98.5 \\
\hline 12:00 & 1 & 0.2 & 450 & 98.7 \\
\hline 14:00 & 1 & 0.2 & 451 & 98.9 \\
\hline 16:00 & 1 & 0.2 & 452 & 99.1 \\
\hline 17:00 & 1 & 0.2 & 453 & 99.3 \\
\hline 19:00 & 1 & 0.2 & 454 & 99.6 \\
\hline 20:30 & 1 & 0.2 & 455 & 99.8 \\
\hline 21:00 & 1 & 0.2 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=23\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF8F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 222 & 48.9 & 222 & 48.9 \\
\hline 4:00 & 1 & 0.2 & 223 & 49.1 \\
\hline 4:30 & 1 & 0.2 & 224 & 49.3 \\
\hline 5:00 & 8 & 1.8 & 232 & 51.1 \\
\hline 5:15 & 1 & 0.2 & 233 & 51.3 \\
\hline 5:30 & 1 & 0.2 & 234 & 51.5 \\
\hline 6:00 & 30 & 6.6 & 264 & 58.1 \\
\hline 6:30 & 1 & 0.2 & 265 & 58.4 \\
\hline 7:00 & 20 & 4.4 & 285 & 62.8 \\
\hline 7:30 & 15 & 3.3 & 300 & 66.1 \\
\hline 7:45 & 1 & 0.2 & 301 & 66.3 \\
\hline 8:00 & 53 & 11.7 & 354 & 78.0 \\
\hline 8:30 & 6 & 1.3 & 360 & 79.3 \\
\hline 8:45 & 1 & 0.2 & 361 & 79.5 \\
\hline 9:00 & 50 & 11.0 & 411 & 90.5 \\
\hline 9:30 & 4 & 0.9 & 415 & 91.4 \\
\hline 10:00 & 25 & 5.5 & 440 & 96.9 \\
\hline 11:00 & 3 & 0.7 & 443 & 97.6 \\
\hline 11:30 & 1 & 0.2 & 444 & 97.8 \\
\hline 12:00 & 1 & 0.2 & 445 & 98.0 \\
\hline 13:00 & 1 & 0.2 & 446 & 98.2 \\
\hline 14:00 & 2 & 0.4 & 448 & 98.7 \\
\hline 16:00 & 1 & 0.2 & 449 & 98.9 \\
\hline 17:00 & 1 & 0.2 & 450 & 99.1 \\
\hline 17:30 & 1 & 0.2 & 451 & 99.3 \\
\hline 19:00 & 1 & 0.2 & 452 & 99.6 \\
\hline 20:00 & 1 & 0.2 & 453 & 99.8 \\
\hline 21:00 & 1 & 0.2 & 454 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=25\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF9F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 305 & 66.9 & 305 & 66.9 \\
\hline 4:00 & 1 & 0.2 & 306 & 67.1 \\
\hline 4:30 & 1 & 0.2 & 307 & 67.3 \\
\hline 5:00 & 3 & 0.7 & 310 & 68.0 \\
\hline 5:30 & 1 & 0.2 & 311 & 68.2 \\
\hline 6:00 & 28 & 6.1 & 339 & 74.3 \\
\hline 6:30 & 1 & 0.2 & 340 & 74.6 \\
\hline 7:00 & 11 & 2.4 & 351 & 77.0 \\
\hline 7:30 & 6 & 1.3 & 357 & 78.3 \\
\hline 8:00 & 30 & 6.6 & 387 & 84.9 \\
\hline 8:30 & 3 & 0.7 & 390 & 85.5 \\
\hline 9:00 & 23 & 5.0 & 413 & 90.6 \\
\hline 9:30 & 1 & 0.2 & 414 & 90.8 \\
\hline 10:00 & 16 & 3.5 & 430 & 94.3 \\
\hline 10:30 & 2 & 0.4 & 432 & 94.7 \\
\hline 11:00 & 13 & 2.9 & 445 & 97.6 \\
\hline 11:30 & 1 & 0.2 & 446 & 97.8 \\
\hline 12:00 & 3 & 0.7 & 449 & 98.5 \\
\hline 13:00 & 2 & 0.4 & 451 & 98.9 \\
\hline 14:00 & 1 & 0.2 & 452 & 99.1 \\
\hline 16:00 & 1 & 0.2 & 453 & 99.3 \\
\hline 19:00 & 1 & 0.2 & 454 & 99.6 \\
\hline 20:00 & 1 & 0.2 & 455 & 99.8 \\
\hline 21:00 & 1 & 0.2 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=23\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF10F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 47 & 10.3 & 47 & 10.3 \\
\hline 4:00 & 4 & 0.9 & 51 & 11.2 \\
\hline 4:30 & 1 & 0.2 & 52 & 11.4 \\
\hline 5:00 & 10 & 2.2 & 62 & 13.6 \\
\hline 5:15 & 1 & 0.2 & 63 & 13.8 \\
\hline 5:30 & 5 & 1.1 & 68 & 14.9 \\
\hline 5:45 & 1 & 0.2 & 69 & 15.1 \\
\hline 6:00 & 47 & 10.3 & 116 & 25.4 \\
\hline 6:30 & 16 & 3.5 & 132 & 28.9 \\
\hline 7:00 & 78 & 17.1 & 210 & 46.1 \\
\hline 7:30 & 40 & 8.8 & 250 & 54.8 \\
\hline 7:45 & 1 & 0.2 & 251 & 55.0 \\
\hline 8:00 & 103 & 22.6 & 354 & 77.6 \\
\hline 8:15 & 1 & 0.2 & 355 & 77.9 \\
\hline 8:30 & 17 & 3.7 & 372 & 81.6 \\
\hline 9:00 & 49 & 10.7 & 421 & 92.3 \\
\hline 9:30 & 7 & 1.5 & 428 & 93.9 \\
\hline 10:00 & 15 & 3.3 & 443 & 97.1 \\
\hline 10:30 & 1 & 0.2 & 444 & 97.4 \\
\hline 11:00 & 4 & 0.9 & 448 & 98.2 \\
\hline 12:00 & 1 & 0.2 & 449 & 98.5 \\
\hline 16:00 & 2 & 0.4 & 451 & 98.9 \\
\hline 16:30 & 1 & 0.2 & 452 & 99.1 \\
\hline 17:00 & 1 & 0.2 & 453 & 99.3 \\
\hline 18:00 & 1 & 0.2 & 454 & 99.6 \\
\hline 19:00 & 2 & 0.4 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=23\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF11F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 222 & 48.9 & 222 & 48.9 \\
\hline 4:00 & 1 & 0.2 & 223 & 49.1 \\
\hline 5:00 & 9 & 2.0 & 232 & 51.1 \\
\hline 5:15 & 1 & 0.2 & 233 & 51.3 \\
\hline 5:30 & 1 & 0.2 & 234 & 51.5 \\
\hline 6:00 & 30 & 6.6 & 264 & 58.1 \\
\hline 6:30 & 1 & 0.2 & 265 & 58.4 \\
\hline 7:00 & 19 & 4.2 & 284 & 62.6 \\
\hline 7:30 & 15 & 3.3 & 299 & 65.9 \\
\hline 7:45 & 1 & 0.2 & 300 & 66.1 \\
\hline 8:00 & 54 & 11.9 & 354 & 78.0 \\
\hline 8:30 & 5 & 1.1 & 359 & 79.1 \\
\hline 8:45 & 1 & 0.2 & 360 & 79.3 \\
\hline 9:00 & 49 & 10.8 & 409 & 90.1 \\
\hline 9:30 & 4 & 0.9 & 413 & 91.0 \\
\hline 10:00 & 25 & 5.5 & 438 & 96.5 \\
\hline 11:00 & 4 & 0.9 & 442 & 97.4 \\
\hline 11:30 & 1 & 0.2 & 443 & 97.6 \\
\hline 12:00 & 1 & 0.2 & 444 & 97.8 \\
\hline 13:00 & 1 & 0.2 & 445 & 98.0 \\
\hline 14:00 & 1 & 0.2 & 446 & 98.2 \\
\hline 16:00 & 2 & 0.4 & 448 & 98.7 \\
\hline 16:30 & 1 & 0.2 & 449 & 98.9 \\
\hline 17:00 & 1 & 0.2 & 450 & 99.1 \\
\hline 17:30 & 1 & 0.2 & 451 & 99.3 \\
\hline 18:00 & 1 & 0.2 & 452 & 99.6 \\
\hline 19:00 & 1 & 0.2 & 453 & 99.8 \\
\hline 20:00 & 1 & 0.2 & 454 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=25\)} \\
\hline
\end{tabular}
\begin{tabular}{rrcrr} 
& light hours/from: Oct Sun \\
LF12F & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline \(0: 00\) & 306 & 67.1 & 306 & 67.1 \\
\(4: 00\) & 1 & 0.2 & 307 & 67.3 \\
\(5: 00\) & 4 & 0.9 & 311 & 68.2 \\
\(5: 30\) & 1 & 0.2 & 312 & 68.4 \\
\(6: 00\) & 28 & 6.1 & 340 & 74.6 \\
\(6: 30\) & 1 & 0.2 & 341 & 74.8 \\
\(7: 00\) & 10 & 2.2 & 351 & 77.0 \\
\(7: 30\) & 6 & 1.3 & 357 & 78.3 \\
\(8: 00\) & 30 & 6.6 & 387 & 84.9 \\
\(8: 30\) & 2 & 0.4 & 389 & 85.3 \\
\(9: 00\) & 22 & 4.8 & 411 & 90.1 \\
\(9: 30\) & 16 & 0.2 & 412 & 90.4 \\
\(10: 00\) & 2 & 3.5 & 428 & 93.9 \\
\(10: 30\) & 14 & 3.4 & 430 & 94.3 \\
\(11: 00\) & 1 & 0.2 & 444 & 97.4 \\
\(11: 30\) & 3 & 0.7 & 445 & 97.6 \\
\(12: 00\) & 2 & 0.4 & 448 & 98.2 \\
\(13: 00\) & 2 & 0.4 & 450 & 98.7 \\
\(16: 00\) & 1 & 0.2 & 452 & 99.1 \\
\(16: 30\) & 1 & 0.2 & 453 & 99.3 \\
\(18: 00\) & 1 & 0.2 & 454 & 99.6 \\
\(19: 00\) & 1 & 0.2 & 455 & 99.8 \\
\(20: 00\) & & & & 456
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF13F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 358 & 79.6 & 358 & 79.6 \\
\hline 5:00 & 2 & 0.4 & 360 & 80.0 \\
\hline 5:15 & 1 & 0.2 & 361 & 80.2 \\
\hline 5:30 & 2 & 0.4 & 363 & 80.7 \\
\hline 6:00 & 23 & 5.1 & 386 & 85.8 \\
\hline 6:30 & 1 & 0.2 & 387 & 86.0 \\
\hline 7:00 & 7 & 1.6 & 394 & 87.6 \\
\hline 7:30 & 5 & 1.1 & 399 & 88.7 \\
\hline 8:00 & 20 & 4.4 & 419 & 93.1 \\
\hline 8:30 & 3 & 0.7 & 422 & 93.8 \\
\hline 9:00 & 8 & 1.8 & 430 & 95.6 \\
\hline 9:30 & 1 & 0.2 & 431 & 95.8 \\
\hline 10:00 & 9 & 2.0 & 440 & 97.8 \\
\hline 10:30 & 1 & 0.2 & 441 & 98.0 \\
\hline 11:00 & 4 & 0.9 & 445 & 98.9 \\
\hline 12:00 & 1 & 0.2 & 446 & 99.1 \\
\hline 16:00 & 1 & 0.2 & 447 & 99.3 \\
\hline 16:30 & 1 & 0.2 & 448 & 99.6 \\
\hline 17:00 & 1 & 0.2 & 449 & 99.8 \\
\hline 19:00 & 1 & 0.2 & 450 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=29\)} \\
\hline \multicolumn{5}{|c|}{light hours/am or pm: Dec Week} \\
\hline LF1M & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 460 & 96.4 & 460 & 96.4 \\
\hline D & 10 & 2.1 & 470 & 98.5 \\
\hline P & 7 & 1.5 & 477 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=2\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Dec Sat } \\
& & & Cumulative & Cumulative \\
LF2M & Frequency & Percent & Frequency & Percent \\
\hdashline A & 453 & 95.4 & 453 & 95.4 \\
D & 12 & 2.5 & 465 & 97.9 \\
P & 10 & 2.1 & 475 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF3M & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 453 & 95.4 & 453 & 95.4 \\
\hline D & 11 & 2.3 & 464 & 97.7 \\
\hline P & 11 & 2.3 & 475 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=4\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Apr Week } \\
& & & Cumulative & Cumulative \\
LF4M & Frequency & Percent & Frequency & Percent \\
A & 453 & 96.6 & 453 & 96.6 \\
D & 10 & 2.1 & 463 & 98.7 \\
P & 6 & 1.3 & 469 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{lcccc} 
& light hours/am or pm: Apr Sat \\
& & & Cumulative & Cumulative \\
LF5M & Frequency & Percent & Frequency & Percent \\
A & 446 & 95.5 & 446 & 95.5 \\
A & 12 & 2.6 & 458 & 98.1 \\
D & 9 & 1.9 & 467 & 100.0 \\
P & & \\
& Frequency Missing & \(=12\) &
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Apr Sun } \\
& & & Cumulative & Cumulative \\
LF6M & Frequency & Percent & Frequency & Percent \\
\hdashline A & 445 & 95.7 & 445 & 95.7 \\
D & 11 & 2.4 & 456 & 98.1 \\
P & 9 & 1.9 & 465 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or \(\mathrm{pm}:\) Aug Week } \\
& & & Cumulative & Cumulative \\
LF7M & Frequency & Percent & Frequency & Percent \\
A & 448 & 96.3 & 448 & 96.3 \\
A & 10 & 2.2 & 458 & 98.5 \\
P & 7 & 1.5 & 465 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 8M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 443 & 95.3 & 443 & 95.3 \\
\hline D & 12 & 2.6 & 455 & 97.8 \\
\hline P & 10 & 2.2 & 465 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 14} \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|}
\hline LF12M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 444 & 95.3 & 444 & 95.3 \\
\hline D & 11 & 2.4 & 455 & 97.6 \\
\hline P & 11 & 2.4 & 466 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 13} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 13M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 444 & 95.7 & 444 & 95.7 \\
\hline D & 15 & 3.2 & 459 & 98.9 \\
\hline P & 5 & 1.1 & 464 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 15} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF1T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 1 & 0.2 & 1 & 0.2 \\
\hline 1:00 & 1 & 0.2 & 2 & 0.4 \\
\hline 1:30 & 1 & 0.2 & 3 & 0.6 \\
\hline 2:00 & 1 & 0.2 & 4 & 0.9 \\
\hline 3:00 & 1 & 0.2 & 5 & 1.1 \\
\hline 5:00 & 1 & 0.2 & 6 & 1.3 \\
\hline 6:00 & 2 & 0.4 & 8 & 1.7 \\
\hline 7:00 & 2 & 0.4 & 10 & 2.1 \\
\hline 7:30 & 1 & 0.2 & 11 & 2.3 \\
\hline 9:00 & 1 & 0.2 & 12 & 2.6 \\
\hline 11:00 & 6 & 1.3 & 18 & 3.8 \\
\hline 12:00 & 3 & 0.6 & 21 & 4.5 \\
\hline 13:00 & 3 & 0.6 & 24 & 5.1 \\
\hline 14:30 & 1 & 0.2 & 25 & 5.3 \\
\hline 15:00 & 19 & 4.1 & 44 & 9.4 \\
\hline 15:30 & 7 & 1.5 & 51 & 10.9 \\
\hline 16:00 & 19 & 4.1 & 70 & 14.9 \\
\hline 16:15 & 1 & 0.2 & 71 & 15.1 \\
\hline 16:30 & 18 & 3.8 & 89 & 19.0 \\
\hline 17:00 & 81 & 17.3 & 170 & 36.2 \\
\hline 17:30 & 25 & 5.3 & 195 & 41.6 \\
\hline 18:00 & 86 & 18.3 & 281 & 59.9 \\
\hline 18:30 & 5 & 1.1 & 286 & 61.0 \\
\hline 19:00 & 29 & 6.2 & 315 & 67.2 \\
\hline 19:30 & 5 & 1.1 & 320 & 68.2 \\
\hline 20:00 & 18 & 3.8 & 338 & 72.1 \\
\hline 20:30 & 3 & 0.6 & 341 & 72.7 \\
\hline 20:45 & 1 & 0.2 & 342 & 72.9 \\
\hline 21:00 & 19 & 4.1 & 361 & 77.0 \\
\hline 21:30 & 5 & 1.1 & 366 & 78.0 \\
\hline 22:00 & 25 & 5.3 & 391 & 83.4 \\
\hline 22:30 & 2 & 0.4 & 393 & 83.8 \\
\hline 23:00 & 9 & 1.9 & 402 & 85.7 \\
\hline 23:30 & 2 & 0.4 & 404 & 86.1 \\
\hline 23:58 & 1 & 0.2 & 405 & 86.4 \\
\hline 24:00 & 62 & 13.2 & 467 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 469 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 10} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF2T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 181 & 39.0 & 181 & 39.0 \\
\hline 1:00 & 1 & 0.2 & 182 & 39.2 \\
\hline 1:30 & 1 & 0.2 & 183 & 39.4 \\
\hline 2:00 & 1 & 0.2 & 184 & 39.7 \\
\hline 3:00 & 1 & 0.2 & 185 & 39.9 \\
\hline 5:00 & 1 & 0.2 & 186 & 40.1 \\
\hline 6:00 & 1 & 0.2 & 187 & 40.3 \\
\hline 7:00 & 1 & 0.2 & 188 & 40.5 \\
\hline 7:30 & 1 & 0.2 & 189 & 40.7 \\
\hline 9:00 & 1 & 0.2 & 190 & 40.9 \\
\hline 11:00 & 5 & 1.1 & 195 & 42.0 \\
\hline 11:30 & 1 & 0.2 & 196 & 42.2 \\
\hline 12:00 & 16 & 3.4 & 212 & 45.7 \\
\hline 13:00 & 6 & 1.3 & 218 & 47.0 \\
\hline 13:30 & 1 & 0.2 & 219 & 47.2 \\
\hline 14:00 & 5 & 1.1 & 224 & 48.3 \\
\hline 14:30 & 1 & 0.2 & 225 & 48.5 \\
\hline 15:00 & 13 & 2.8 & 238 & 51.3 \\
\hline 15:30 & 1 & 0.2 & 239 & 51.5 \\
\hline 16:00 & 7 & 1.5 & 246 & 53.0 \\
\hline 16:30 & 1 & 0.2 & 247 & 53.2 \\
\hline 17:00 & 36 & 7.8 & 283 & 61.0 \\
\hline 17:30 & 9 & 1.9 & 292 & 62.9 \\
\hline 17:45 & 1 & 0.2 & 293 & 63.1 \\
\hline 18:00 & 39 & 8.4 & 332 & 71.6 \\
\hline 18:30 & 3 & 0.6 & 335 & 72.2 \\
\hline 19:00 & 17 & 3.7 & 352 & 75.9 \\
\hline 20:00 & 10 & 2.2 & 362 & 78.0 \\
\hline 20:30 & 2 & 0.4 & 364 & 78.4 \\
\hline 21:00 & 9 & 1.9 & 373 & 80.4 \\
\hline 21:30 & 4 & 0.9 & 377 & 81.2 \\
\hline 22:00 & 17 & 3.7 & 394 & 84.9 \\
\hline 22:30 & 1 & 0.2 & 395 & 85.1 \\
\hline 23:00 & 5 & 1.1 & 400 & 86.2 \\
\hline 23:30 & 1 & 0.2 & 401 & 86.4 \\
\hline 23:58 & 1 & 0.2 & 402 & 86.6 \\
\hline 24:00 & 60 & 12.9 & 462 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 464 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=15\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF3T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 265 & 57.0 & 265 & 57.0 \\
\hline 1:00 & 1 & 0.2 & 266 & 57.2 \\
\hline 1:30 & 1 & 0.2 & 267 & 57.4 \\
\hline 2:00 & 1 & 0.2 & 268 & 57.6 \\
\hline 3:00 & 1 & 0.2 & 269 & 57.8 \\
\hline 5:00 & 1 & 0.2 & 270 & 58.1 \\
\hline 6:00 & 1 & 0.2 & 271 & 58.3 \\
\hline 7:00 & 1 & 0.2 & 272 & 58.5 \\
\hline 7:30 & 1 & 0.2 & 273 & 58.7 \\
\hline 9:00 & 1 & 0.2 & 274 & 58.9 \\
\hline 11:00 & 11 & 2.4 & 285 & 61.3 \\
\hline 12:00 & 8 & 1.7 & 293 & 63.0 \\
\hline 13:00 & 4 & 0.9 & 297 & 63.9 \\
\hline 14:00 & 4 & 0.9 & 301 & 64.7 \\
\hline 15:00 & 1 & 0.2 & 302 & 64.9 \\
\hline 15:30 & 1 & 0.2 & 303 & 65.2 \\
\hline 16:00 & 4 & 0.9 & 307 & 66.0 \\
\hline 16:30 & 1 & 0.2 & 308 & 66.2 \\
\hline 16:45 & 1 & 0.2 & 309 & 66.5 \\
\hline 17:00 & 22 & 4.7 & 331 & 71.2 \\
\hline 17:30 & 2 & 0.4 & 333 & 71.6 \\
\hline 18:00 & 22 & 4.7 & 355 & 76.3 \\
\hline 18:30 & 1 & 0.2 & 356 & 76.6 \\
\hline 19:00 & 11 & 2.4 & 367 & 78.9 \\
\hline 20:00 & 8 & 1.7 & 375 & 80.6 \\
\hline 20:30 & 4 & 0.9 & 379 & 81.5 \\
\hline 21:00 & 7 & 1.5 & 386 & 83.0 \\
\hline 21:30 & 1 & 0.2 & 387 & 83.2 \\
\hline 22:00 & 13 & 2.8 & 400 & 86.0 \\
\hline 22:30 & 1 & 0.2 & 401 & 86.2 \\
\hline 23:00 & 4 & 0.9 & 405 & 87.1 \\
\hline 23:58 & 1 & 0.2 & 406 & 87.3 \\
\hline 24:00 & 57 & 12.3 & 463 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 465 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 14} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF4T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 1 & 0.2 & 1 & 0.2 \\
\hline 1:00 & 1 & 0.2 & 2 & 0.4 \\
\hline 1:30 & 1 & 0.2 & 3 & 0.7 \\
\hline 2:00 & 1 & 0.2 & 4 & 0.9 \\
\hline 3:00 & 1 & 0.2 & 5 & 1.1 \\
\hline 5:00 & 1 & 0.2 & 6 & 1.3 \\
\hline 5:45 & 1 & 0.2 & 7 & 1.5 \\
\hline 6:00 & 3 & 0.7 & 10 & 2.2 \\
\hline 6:30 & 1 & 0.2 & 11 & 2.4 \\
\hline 7:00 & 1 & 0.2 & 12 & 2.6 \\
\hline 9:00 & 1 & 0.2 & 13 & 2.8 \\
\hline 10:30 & 1 & 0.2 & 14 & 3.0 \\
\hline 11:00 & 6 & 1.3 & 20 & 4.3 \\
\hline 12:00 & 3 & 0.7 & 23 & 5.0 \\
\hline 13:00 & 2 & 0.4 & 25 & 5.4 \\
\hline 14:30 & 1 & 0.2 & 26 & 5.7 \\
\hline 15:00 & 18 & 3.9 & 44 & 9.6 \\
\hline 15:30 & 7 & 1.5 & 51 & 11.1 \\
\hline 16:00 & 19 & 4.1 & 70 & 15.2 \\
\hline 16:15 & 1 & 0.2 & 71 & 15.4 \\
\hline 16:30 & 18 & 3.9 & 89 & 19.3 \\
\hline 17:00 & 79 & 17.2 & 168 & 36.5 \\
\hline 17:30 & 23 & 5.0 & 191 & 41.5 \\
\hline 18:00 & 80 & 17.4 & 271 & 58.9 \\
\hline 18:30 & 5 & 1.1 & 276 & 60.0 \\
\hline 19:00 & 29 & 6.3 & 305 & 66.3 \\
\hline 19:30 & 5 & 1.1 & 310 & 67.4 \\
\hline 20:00 & 20 & 4.3 & 330 & 71.7 \\
\hline 20:30 & 3 & 0.7 & 333 & 72.4 \\
\hline 21:00 & 20 & 4.3 & 353 & 76.7 \\
\hline 21:30 & 5 & 1.1 & 358 & 77.8 \\
\hline 22:00 & 21 & 4.6 & 379 & 82.4 \\
\hline 22:30 & 2 & 0.4 & 381 & 82.8 \\
\hline 23:00 & 12 & 2.6 & 393 & 85.4 \\
\hline 23:30 & 3 & 0.7 & 396 & 86.1 \\
\hline 23:58 & 1 & 0.2 & 397 & 86.3 \\
\hline 24:00 & 61 & 13.3 & 458 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 460 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 19} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF5T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 174 & 38.2 & 174 & 38.2 \\
\hline 1:00 & 1 & 0.2 & 175 & 38.4 \\
\hline 1:30 & 1 & 0.2 & 176 & 38.6 \\
\hline 2:00 & 1 & 0.2 & 177 & 38.8 \\
\hline 3:00 & 1 & 0.2 & 178 & 39.0 \\
\hline 5:00 & 1 & 0.2 & 179 & 39.3 \\
\hline 5:45 & 1 & 0.2 & 180 & 39.5 \\
\hline 6:00 & 2 & 0.4 & 182 & 39.9 \\
\hline 6:30 & 1 & 0.2 & 183 & 40.1 \\
\hline 9:00 & 1 & 0.2 & 184 & 40.4 \\
\hline 10:30 & 1 & 0.2 & 185 & 40.6 \\
\hline 11:00 & 5 & 1.1 & 190 & 41.7 \\
\hline 11:30 & 1 & 0.2 & 191 & 41.9 \\
\hline 12:00 & 16 & 3.5 & 207 & 45.4 \\
\hline 13:00 & 5 & 1.1 & 212 & 46.5 \\
\hline 13:30 & 1 & 0.2 & 213 & 46.7 \\
\hline 14:00 & 6 & 1.3 & 219 & 48.0 \\
\hline 14:30 & 1 & 0.2 & 220 & 48.2 \\
\hline 15:00 & 12 & 2.6 & 232 & 50.9 \\
\hline 15:30 & 1 & 0.2 & 233 & 51.1 \\
\hline 16:00 & 8 & 1.8 & 241 & 52.9 \\
\hline 16:30 & 1 & 0.2 & 242 & 53.1 \\
\hline 17:00 & 35 & 7.7 & 277 & 60.7 \\
\hline 17:30 & 8 & 1.8 & 285 & 62.5 \\
\hline 17:45 & 1 & 0.2 & 286 & 62.7 \\
\hline 18:00 & 38 & 8.3 & 324 & 71.1 \\
\hline 18:30 & 3 & 0.7 & 327 & 71.7 \\
\hline 19:00 & 17 & 3.7 & 344 & 75.4 \\
\hline 20:00 & 12 & 2.6 & 356 & 78.1 \\
\hline 20:30 & 2 & 0.4 & 358 & 78.5 \\
\hline 21:00 & 8 & 1.8 & 366 & 80.3 \\
\hline 21:30 & 4 & 0.9 & 370 & 81.1 \\
\hline 22:00 & 14 & 3.1 & 384 & 84.2 \\
\hline 22:30 & 1 & 0.2 & 385 & 84.4 \\
\hline 23:00 & 8 & 1.8 & 393 & 86.2 \\
\hline 23:30 & 1 & 0.2 & 394 & 86.4 \\
\hline 23:58 & 1 & 0.2 & 395 & 86.6 \\
\hline 24:00 & 59 & 12.9 & 454 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=23\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF6T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 257 & 56.5 & 257 & 56.5 \\
\hline 1:00 & 1 & 0.2 & 258 & 56.7 \\
\hline 1:30 & 1 & 0.2 & 259 & 56.9 \\
\hline 2:00 & 1 & 0.2 & 260 & 57.1 \\
\hline 3:00 & 1 & 0.2 & 261 & 57.4 \\
\hline 5:00 & 1 & 0.2 & 262 & 57.6 \\
\hline 5:45 & 1 & 0.2 & 263 & 57.8 \\
\hline 6:00 & 2 & 0.4 & 265 & 58.2 \\
\hline 6:30 & 1 & 0.2 & 266 & 58.5 \\
\hline 9:00 & 1 & 0.2 & 267 & 58.7 \\
\hline 10:30 & 1 & 0.2 & 268 & 58.9 \\
\hline 11:00 & 6 & 1.3 & 274 & 60.2 \\
\hline 12:00 & 8 & 1.8 & 282 & 62.0 \\
\hline 13:00 & 4 & 0.9 & 286 & 62.9 \\
\hline 14:00 & 4 & 0.9 & 290 & 63.7 \\
\hline 15:00 & 2 & 0.4 & 292 & 64.2 \\
\hline 15:30 & 1 & 0.2 & 293 & 64.4 \\
\hline 16:00 & 3 & 0.7 & 296 & 65.1 \\
\hline 16:30 & 1 & 0.2 & 297 & 65.3 \\
\hline 16:45 & 1 & 0.2 & 298 & 65.5 \\
\hline 17:00 & 20 & 4.4 & 318 & 69.9 \\
\hline 17:30 & 2 & 0.4 & 320 & 70.3 \\
\hline 18:00 & 21 & 4.6 & 341 & 74.9 \\
\hline 18:30 & 1 & 0.2 & 342 & 75.2 \\
\hline 19:00 & 12 & 2.6 & 354 & 77.8 \\
\hline 20:00 & 8 & 1.8 & 362 & 79.6 \\
\hline 20:30 & 4 & 0.9 & 366 & 80.4 \\
\hline 21:00 & 7 & 1.5 & 373 & 82.0 \\
\hline 21:30 & 1 & 0.2 & 374 & 82.2 \\
\hline 22:00 & 11 & 2.4 & 385 & 84.6 \\
\hline 22:30 & 1 & 0.2 & 386 & 84.8 \\
\hline 23:00 & 7 & 1.5 & 393 & 86.4 \\
\hline 23:58 & 1 & 0.2 & 394 & 86.6 \\
\hline 24:00 & 59 & 13.0 & 453 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 455 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 24} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF7T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 35 & 7.7 & 35 & 7.7 \\
\hline 1:00 & 1 & 0.2 & 36 & 7.9 \\
\hline 1:30 & 1 & 0.2 & 37 & 8.1 \\
\hline 2:00 & 1 & 0.2 & 38 & 8.3 \\
\hline 2:30 & 1 & 0.2 & 39 & 8.5 \\
\hline 3:00 & 1 & 0.2 & 40 & 8.8 \\
\hline 5:00 & 1 & 0.2 & 41 & 9.0 \\
\hline 5:30 & 1 & 0.2 & 42 & 9.2 \\
\hline 6:00 & 3 & 0.7 & 45 & 9.8 \\
\hline 6:30 & 1 & 0.2 & 46 & 10.1 \\
\hline 7:00 & 1 & 0.2 & 47 & 10.3 \\
\hline 9:00 & 1 & 0.2 & 48 & 10.5 \\
\hline 11:00 & 6 & 1.3 & 54 & 11.8 \\
\hline 12:00 & 4 & 0.9 & 58 & 12.7 \\
\hline 13:00 & 5 & 1.1 & 63 & 13.8 \\
\hline 14:30 & 1 & 0.2 & 64 & 14.0 \\
\hline 15:00 & 5 & 1.1 & 69 & 15.1 \\
\hline 15:30 & 5 & 1.1 & 74 & 16.2 \\
\hline 16:00 & 12 & 2.6 & 86 & 18.8 \\
\hline 16:15 & 1 & 0.2 & 87 & 19.0 \\
\hline 16:30 & 6 & 1.3 & 93 & 20.4 \\
\hline 17:00 & 81 & 17.7 & 174 & 38.1 \\
\hline 17:30 & 24 & 5.3 & 198 & 43.3 \\
\hline 18:00 & 80 & 17.5 & 278 & 60.8 \\
\hline 18:30 & 5 & 1.1 & 283 & 61.9 \\
\hline 19:00 & 28 & 6.1 & 311 & 68.1 \\
\hline 19:30 & 5 & 1.1 & 316 & 69.1 \\
\hline 20:00 & 17 & 3.7 & 333 & 72.9 \\
\hline 20:30 & 3 & 0.7 & 336 & 73.5 \\
\hline 21:00 & 19 & 4.2 & 355 & 77.7 \\
\hline 21:30 & 5 & 1.1 & 360 & 78.8 \\
\hline 22:00 & 19 & 4.2 & 379 & 82.9 \\
\hline 22:30 & 2 & 0.4 & 381 & 83.4 \\
\hline 23:00 & 11 & 2.4 & 392 & 85.8 \\
\hline 23:30 & 3 & 0.7 & 395 & 86.4 \\
\hline 23:58 & 1 & 0.2 & 396 & 86.7 \\
\hline 24:00 & 59 & 12.9 & 455 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 457 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=22\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF8T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 179 & 39.4 & 179 & 39.4 \\
\hline 1:00 & 1 & 0.2 & 180 & 39.6 \\
\hline 1:30 & 1 & 0.2 & 181 & 39.9 \\
\hline 2:00 & 2 & 0.4 & 183 & 40.3 \\
\hline 3:00 & 1 & 0.2 & 184 & 40.5 \\
\hline 5:00 & 1 & 0.2 & 185 & 40.7 \\
\hline 5:45 & 1 & 0.2 & 186 & 41.0 \\
\hline 6:00 & 2 & 0.4 & 188 & 41.4 \\
\hline 6:30 & 1 & 0.2 & 189 & 41.6 \\
\hline 9:00 & 1 & 0.2 & 190 & 41.9 \\
\hline 11:00 & 5 & 1.1 & 195 & 43.0 \\
\hline 11:30 & 1 & 0.2 & 196 & 43.2 \\
\hline 12:00 & 16 & 3.5 & 212 & 46.7 \\
\hline 13:00 & 5 & 1.1 & 217 & 47.8 \\
\hline 13:30 & 1 & 0.2 & 218 & 48.0 \\
\hline 14:00 & 5 & 1.1 & 223 & 49.1 \\
\hline 14:30 & 1 & 0.2 & 224 & 49.3 \\
\hline 15:00 & 12 & 2.6 & 236 & 52.0 \\
\hline 15:30 & 1 & 0.2 & 237 & 52.2 \\
\hline 16:00 & 8 & 1.8 & 245 & 54.0 \\
\hline 16:30 & 1 & 0.2 & 246 & 54.2 \\
\hline 17:00 & 34 & 7.5 & 280 & 61.7 \\
\hline 17:30 & 9 & 2.0 & 289 & 63.7 \\
\hline 17:45 & 1 & 0.2 & 290 & 63.9 \\
\hline 18:00 & 36 & 7.9 & 326 & 71.8 \\
\hline 18:30 & 3 & 0.7 & 329 & 72.5 \\
\hline 19:00 & 16 & 3.5 & 345 & 76.0 \\
\hline 20:00 & 11 & 2.4 & 356 & 78.4 \\
\hline 20:30 & 2 & 0.4 & 358 & 78.9 \\
\hline 21:00 & 9 & 2.0 & 367 & 80.8 \\
\hline 21:30 & 4 & 0.9 & 371 & 81.7 \\
\hline 22:00 & 14 & 3.1 & 385 & 84.8 \\
\hline 22:30 & 1 & 0.2 & 386 & 85.0 \\
\hline 23:00 & 8 & 1.8 & 394 & 86.8 \\
\hline 23:30 & 1 & 0.2 & 395 & 87.0 \\
\hline 23:58 & 1 & 0.2 & 396 & 87.2 \\
\hline 24:00 & 56 & 12.3 & 452 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 454 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=25\)} \\
\hline
\end{tabular}
light hours/to: Aug Sun
\begin{tabular}{|c|c|c|c|c|}
\hline LF9T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 259 & 56.8 & 259 & 56.8 \\
\hline 1:00 & 1 & 0.2 & 260 & 57.0 \\
\hline 1:30 & 1 & 0.2 & 261 & 57.2 \\
\hline 2:00 & 1 & 0.2 & 262 & 57.5 \\
\hline 3:00 & 1 & 0.2 & 263 & 57.7 \\
\hline 5:00 & 1 & 0.2 & 264 & 57.9 \\
\hline 5:45 & 1 & 0.2 & 265 & 58.1 \\
\hline 6:00 & 2 & 0.4 & 267 & 58.6 \\
\hline 6:30 & 1 & 0.2 & 268 & 58.8 \\
\hline 9:00 & 1 & 0.2 & 269 & 59.0 \\
\hline 11:00 & 6 & 1.3 & 275 & 60.3 \\
\hline 12:00 & 9 & 2.0 & 284 & 62.3 \\
\hline 13:00 & 3 & 0.7 & 287 & 62.9 \\
\hline 14:00 & 4 & 0.9 & 291 & 63.8 \\
\hline 15:00 & 2 & 0.4 & 293 & 64.3 \\
\hline 15:30 & 1 & 0.2 & 294 & 64.5 \\
\hline 16:00 & 3 & 0.7 & 297 & 65.1 \\
\hline 16:30 & 1 & 0.2 & 298 & 65.4 \\
\hline 16:45 & 1 & 0.2 & 299 & 65.6 \\
\hline 17:00 & 20 & 4.4 & 319 & 70.0 \\
\hline 17:30 & 3 & 0.7 & 322 & 70.6 \\
\hline 18:00 & 20 & 4.4 & 342 & 75.0 \\
\hline 18:30 & 1 & 0.2 & 343 & 75.2 \\
\hline 19:00 & 11 & 2.4 & 354 & 77.6 \\
\hline 20:00 & 8 & 1.8 & 362 & 79.4 \\
\hline 20:30 & 4 & 0.9 & 366 & 80.3 \\
\hline 21:00 & 7 & 1.5 & 373 & 81.8 \\
\hline 21:30 & 1 & 0.2 & 374 & 82.0 \\
\hline 22:00 & 11 & 2.4 & 385 & 84.4 \\
\hline 22:30 & 1 & 0.2 & 386 & 84.6 \\
\hline 23:00 & 7 & 1.5 & 393 & 86.2 \\
\hline 23:58 & 1 & 0.2 & 394 & 86.4 \\
\hline 24:00 & 60 & 13.2 & 454 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 23} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF10T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 1 & 0.2 & 1 & 0.2 \\
\hline 1:00 & 1 & 0.2 & 2 & 0.4 \\
\hline 1:30 & 1 & 0.2 & 3 & 0.7 \\
\hline 2:00 & 1 & 0.2 & 4 & 0.9 \\
\hline 3:00 & 1 & 0.2 & 5 & 1.1 \\
\hline 5:00 & 1 & 0.2 & 6 & 1.3 \\
\hline 5:30 & 1 & 0.2 & 7 & 1.5 \\
\hline 6:00 & 2 & 0.4 & 9 & 2.0 \\
\hline 7:00 & 2 & 0.4 & 11 & 2.4 \\
\hline 7:30 & 1 & 0.2 & 12 & 2.6 \\
\hline 9:00 & 1 & 0.2 & 13 & 2.8 \\
\hline 11:00 & 6 & 1.3 & 19 & 4.2 \\
\hline 12:00 & 3 & 0.7 & 22 & 4.8 \\
\hline 13:00 & 2 & 0.4 & 24 & 5.3 \\
\hline 14:30 & 1 & 0.2 & 25 & 5.5 \\
\hline 15:00 & 18 & 3.9 & 43 & 9.4 \\
\hline 15:30 & 7 & 1.5 & 50 & 10.9 \\
\hline 16:00 & 18 & 3.9 & 68 & 14.9 \\
\hline 16:30 & 18 & 3.9 & 86 & 18.8 \\
\hline 17:00 & 79 & 17.3 & 165 & 36.1 \\
\hline 17:30 & 26 & 5.7 & 191 & 41.8 \\
\hline 18:00 & 79 & 17.3 & 270 & 59.1 \\
\hline 18:30 & 5 & 1.1 & 275 & 60.2 \\
\hline 19:00 & 29 & 6.3 & 304 & 66.5 \\
\hline 19:30 & 5 & 1.1 & 309 & 67.6 \\
\hline 20:00 & 19 & 4.2 & 328 & 71.8 \\
\hline 20:30 & 3 & 0.7 & 331 & 72.4 \\
\hline 20:45 & 1 & 0.2 & 332 & 72.6 \\
\hline 21:00 & 20 & 4.4 & 352 & 77.0 \\
\hline 21:30 & 5 & 1.1 & 357 & 78.1 \\
\hline 22:00 & 22 & 4.8 & 379 & 82.9 \\
\hline 22:30 & 2 & 0.4 & 381 & 83.4 \\
\hline 23:00 & 11 & 2.4 & 392 & 85.8 \\
\hline 23:30 & 2 & 0.4 & 394 & 86.2 \\
\hline 23:58 & 1 & 0.2 & 395 & 86.4 \\
\hline 24:00 & 60 & 13.1 & 455 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 457 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=22\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF11T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 177 & 39.0 & 177 & 39.0 \\
\hline 1:00 & 1 & 0.2 & 178 & 39.2 \\
\hline 1:30 & 1 & 0.2 & 179 & 39.4 \\
\hline 2:00 & 1 & 0.2 & 180 & 39.6 \\
\hline 3:00 & 1 & 0.2 & 181 & 39.9 \\
\hline 5:00 & 1 & 0.2 & 182 & 40.1 \\
\hline 5:30 & 1 & 0.2 & 183 & 40.3 \\
\hline 6:00 & 1 & 0.2 & 184 & 40.5 \\
\hline 7:00 & 1 & 0.2 & 185 & 40.7 \\
\hline 7:30 & 1 & 0.2 & 186 & 41.0 \\
\hline 9:00 & 1 & 0.2 & 187 & 41.2 \\
\hline 11:00 & 5 & 1.1 & 192 & 42.3 \\
\hline 11:30 & 1 & 0.2 & 193 & 42.5 \\
\hline 12:00 & 16 & 3.5 & 209 & 46.0 \\
\hline 13:00 & 5 & 1.1 & 214 & 47.1 \\
\hline 13:30 & 1 & 0.2 & 215 & 47.4 \\
\hline 14:00 & 5 & 1.1 & 220 & 48.5 \\
\hline 14:30 & 1 & 0.2 & 221 & 48.7 \\
\hline 15:00 & 12 & 2.6 & 233 & 51.3 \\
\hline 15:30 & 1 & 0.2 & 234 & 51.5 \\
\hline 16:00 & 8 & 1.8 & 242 & 53.3 \\
\hline 16:30 & 1 & 0.2 & 243 & 53.5 \\
\hline 17:00 & 34 & 7.5 & 277 & 61.0 \\
\hline 17:30 & 10 & 2.2 & 287 & 63.2 \\
\hline 17:45 & 1 & 0.2 & 288 & 63.4 \\
\hline 18:00 & 35 & 7.7 & 323 & 71.1 \\
\hline 18:30 & 3 & 0.7 & 326 & 71.8 \\
\hline 19:00 & 17 & 3.7 & 343 & 75.6 \\
\hline 20:00 & 11 & 2.4 & 354 & 78.0 \\
\hline 20:30 & 2 & 0.4 & 356 & 78.4 \\
\hline 21:00 & 8 & 1.8 & 364 & 80.2 \\
\hline 21:30 & 4 & 0.9 & 368 & 81.1 \\
\hline 22:00 & 15 & 3.3 & 383 & 84.4 \\
\hline 22:30 & 1 & 0.2 & 384 & 84.6 \\
\hline 23:00 & 7 & 1.5 & 391 & 86.1 \\
\hline 23:30 & 1 & 0.2 & 392 & 86.3 \\
\hline 23:58 & 1 & 0.2 & 393 & 86.6 \\
\hline 24:00 & 59 & 13.0 & 452 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 454 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=25\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF12T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 258 & 56.6 & 258 & 56.6 \\
\hline 1:00 & 1 & 0.2 & 259 & 56.8 \\
\hline 1:30 & 1 & 0.2 & 260 & 57.0 \\
\hline 2:00 & 1 & 0.2 & 261 & 57.2 \\
\hline 3:00 & 1 & 0.2 & 262 & 57.5 \\
\hline 5:00 & 1 & 0.2 & 263 & 57.7 \\
\hline 5:30 & 1 & 0.2 & 264 & 57.9 \\
\hline 6:00 & 1 & 0.2 & 265 & 58.1 \\
\hline 7:00 & 1 & 0.2 & 266 & 58.3 \\
\hline 7:30 & 1 & 0.2 & 267 & 58.6 \\
\hline 9:00 & 1 & 0.2 & 268 & 58.8 \\
\hline 11:00 & 6 & 1.3 & 274 & 60.1 \\
\hline 12:00 & 8 & 1.8 & 282 & 61.8 \\
\hline 13:00 & 3 & 0.7 & 285 & 62.5 \\
\hline 14:00 & 4 & 0.9 & 289 & 63.4 \\
\hline 15:00 & 2 & 0.4 & 291 & 63.8 \\
\hline 15:30 & 1 & 0.2 & 292 & 64.0 \\
\hline 16:00 & 3 & 0.7 & 295 & 64.7 \\
\hline 16:30 & 1 & 0.2 & 296 & 64.9 \\
\hline 16:45 & 1 & 0.2 & 297 & 65.1 \\
\hline 17:00 & 20 & 4.4 & 317 & 69.5 \\
\hline 17:30 & 3 & 0.7 & 320 & 70.2 \\
\hline 18:00 & 20 & 4.4 & 340 & 74.6 \\
\hline 18:30 & 1 & 0.2 & 341 & 74.8 \\
\hline 19:00 & 12 & 2.6 & 353 & 77.4 \\
\hline 20:00 & 8 & 1.8 & 361 & 79.2 \\
\hline 20:30 & 4 & 0.9 & 365 & 80.0 \\
\hline 21:00 & 7 & 1.5 & 372 & 81.6 \\
\hline 21:30 & 1 & 0.2 & 373 & 81.8 \\
\hline 22:00 & 12 & 2.6 & 385 & 84.4 \\
\hline 22:30 & 1 & 0.2 & 386 & 84.6 \\
\hline 23:00 & 6 & 1.3 & 392 & 86.0 \\
\hline 23:58 & 1 & 0.2 & 393 & 86.2 \\
\hline 24:00 & 61 & 13.4 & 454 & 99.6 \\
\hline 24:30 & 2 & 0.4 & 456 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 23} \\
\hline
\end{tabular}

light hours/am or pm: Dec Week
\begin{tabular}{lcccc} 
LF1N & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
------------------------------------------- \\
A & 33 & 6.9 & 33 & 6.9 \\
D & 10 & 2.1 & 43 & 9.0 \\
P & 436 & 91.0 & 479 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF2N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 31 & 6.5 & 31 & 6.5 \\
\hline D & 12 & 2.5 & 43 & 9.0 \\
\hline P & 433 & 91.0 & 476 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF3N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 30 & 6.3 & 30 & 6.3 \\
\hline D & 11 & 2.3 & 41 & 8.6 \\
\hline P & 435 & 91.4 & 476 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=3\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 4N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 35 & 7.4 & 35 & 7.4 \\
\hline D & 10 & 2.1 & 45 & 9.6 \\
\hline P & 425 & 90.4 & 470 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 9} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF5N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 33 & 7.1 & 33 & 7.1 \\
\hline D & 12 & 2.6 & 45 & 9.6 \\
\hline P & 423 & 90.4 & 468 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 6N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 32 & 6.9 & 32 & 6.9 \\
\hline D & 11 & 2.4 & 43 & 9.2 \\
\hline P & 423 & 90.8 & 466 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 13} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{3}{c}{ light hours/am or pm: Aug Week } \\
& & & Cumulative & Cumulative \\
LF7N & Frequency & Percent & Frequency & Percent \\
\hdashline A & 36 & 7.7 & 36 & 7.7 \\
D & 10 & 2.1 & 46 & 9.9 \\
P & 421 & 90.1 & 467 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 8N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 32 & 6.9 & 32 & 6.9 \\
\hline D & 12 & 2.6 & 44 & 9.4 \\
\hline P & 422 & 90.6 & 466 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 13} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 9N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 32 & 6.9 & 32 & 6.9 \\
\hline D & 11 & 2.4 & 43 & 9.2 \\
\hline P & 424 & 90.8 & 467 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=12\)} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline LF12N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 31 & 6.6 & 31 & 6.6 \\
\hline D & 11 & 2.4 & 42 & 9.0 \\
\hline P & 425 & 91.0 & 467 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=12\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{3}{c}{ light hours/am or pm: Holiday } \\
& & & Cumulative & Cumulative \\
LF13N & Frequency & Percent & Frequency & Percent \\
A & 23 & 4.9 & 23 & 4.9 \\
D & 15 & 3.2 & 38 & 8.2 \\
P & 427 & 91.8 & 465 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Dec Week
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Dec Sat & \\
LW2 & Frequency & & Cercent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW3 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 112 & 25.1 & 112 & 25.1 \\
\hline 0.5 & 1 & 0.2 & 113 & 25.3 \\
\hline 1 & 19 & 4.3 & 132 & 29.6 \\
\hline 2 & 32 & 7.2 & 164 & 36.8 \\
\hline 3 & 20 & 4.5 & 184 & 41.3 \\
\hline 5 & 33 & 7.4 & 217 & 48.7 \\
\hline 7 & 1 & 0.2 & 218 & 48.9 \\
\hline 8 & 1 & 0.2 & 219 & 49.1 \\
\hline 10 & 17 & 3.8 & 236 & 52.9 \\
\hline 13 & 1 & 0.2 & 237 & 53.1 \\
\hline 15 & 6 & 1.3 & 243 & 54.5 \\
\hline 20 & 9 & 2.0 & 252 & 56.5 \\
\hline 25 & 3 & 0.7 & 255 & 57.2 \\
\hline 30 & 8 & 1.8 & 263 & 59.0 \\
\hline 33 & 1 & 0.2 & 264 & 59.2 \\
\hline 40 & 6 & 1.3 & 270 & 60.5 \\
\hline 45 & 1 & 0.2 & 271 & 60.8 \\
\hline 50 & 12 & 2.7 & 283 & 63.5 \\
\hline 60 & 4 & 0.9 & 287 & 64.3 \\
\hline 65 & 2 & 0.4 & 289 & 64.8 \\
\hline 66 & 1 & 0.2 & 290 & 65.0 \\
\hline 70 & 3 & 0.7 & 293 & 65.7 \\
\hline 75 & 5 & 1.1 & 298 & 66.8 \\
\hline 80 & 12 & 2.7 & 310 & 69.5 \\
\hline 85 & 3 & 0.7 & 313 & 70.2 \\
\hline 90 & 9 & 2.0 & 322 & 72.2 \\
\hline 95 & 3 & 0.7 & 325 & 72.9 \\
\hline 98 & 4 & 0.9 & 329 & 73.8 \\
\hline 99 & 1 & 0.2 & 330 & 74.0 \\
\hline 100 & 116 & 26.0 & 446 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Apr Week
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW5 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 68 & 15.3 & 68 & 15.3 \\
\hline 0.5 & 1 & 0.2 & 69 & 15.5 \\
\hline 1 & 9 & 2.0 & 78 & 17.6 \\
\hline 2 & 27 & 6.1 & 105 & 23.6 \\
\hline 3 & 17 & 3.8 & 122 & 27.5 \\
\hline 5 & 27 & 6.1 & 149 & 33.6 \\
\hline 6 & 1 & 0.2 & 150 & 33.8 \\
\hline 8 & 1 & 0.2 & 151 & 34.0 \\
\hline 10 & 10 & 2.3 & 161 & 36.3 \\
\hline 13 & 1 & 0.2 & 162 & 36.5 \\
\hline 15 & 5 & 1.1 & 167 & 37.6 \\
\hline 20 & 12 & 2.7 & 179 & 40.3 \\
\hline 25 & 3 & 0.7 & 182 & 41.0 \\
\hline 30 & 11 & 2.5 & 193 & 43.5 \\
\hline 33 & 1 & 0.2 & 194 & 43.7 \\
\hline 35 & 1 & 0.2 & 195 & 43.9 \\
\hline 40 & 5 & 1.1 & 200 & 45.0 \\
\hline 45 & 2 & 0.5 & 202 & 45.5 \\
\hline 50 & 14 & 3.2 & 216 & 48.6 \\
\hline 60 & 2 & 0.5 & 218 & 49.1 \\
\hline 65 & 3 & 0.7 & 221 & 49.8 \\
\hline 66 & 2 & 0.5 & 223 & 50.2 \\
\hline 70 & 3 & 0.7 & 226 & 50.9 \\
\hline 75 & 7 & 1.6 & 233 & 52.5 \\
\hline 80 & 14 & 3.2 & 247 & 55.6 \\
\hline 85 & 3 & 0.7 & 250 & 56.3 \\
\hline 90 & 15 & 3.4 & 265 & 59.7 \\
\hline 92 & 1 & 0.2 & 266 & 59.9 \\
\hline 95 & 5 & 1.1 & 271 & 61.0 \\
\hline 98 & 4 & 0.9 & 275 & 61.9 \\
\hline 99 & 1 & 0.2 & 276 & 62.2 \\
\hline 100 & 168 & 37.8 & 444 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 35} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW6 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 112 & 25.5 & 112 & 25.5 \\
\hline 0.5 & 1 & 0.2 & 113 & 25.7 \\
\hline 1 & 18 & 4.1 & 131 & 29.8 \\
\hline 2 & 29 & 6.6 & 160 & 36.4 \\
\hline 3 & 20 & 4.5 & 180 & 40.9 \\
\hline 5 & 33 & 7.5 & 213 & 48.4 \\
\hline 7 & 1 & 0.2 & 214 & 48.6 \\
\hline 8 & 1 & 0.2 & 215 & 48.9 \\
\hline 10 & 15 & 3.4 & 230 & 52.3 \\
\hline 13 & 1 & 0.2 & 231 & 52.5 \\
\hline 15 & 5 & 1.1 & 236 & 53.6 \\
\hline 20 & 8 & 1.8 & 244 & 55.5 \\
\hline 25 & 2 & 0.5 & 246 & 55.9 \\
\hline 30 & 10 & 2.3 & 256 & 58.2 \\
\hline 33 & 1 & 0.2 & 257 & 58.4 \\
\hline 35 & 1 & 0.2 & 258 & 58.6 \\
\hline 40 & 5 & 1.1 & 263 & 59.8 \\
\hline 45 & 1 & 0.2 & 264 & 60.0 \\
\hline 50 & 12 & 2.7 & 276 & 62.7 \\
\hline 60 & 5 & 1.1 & 281 & 63.9 \\
\hline 65 & 3 & 0.7 & 284 & 64.5 \\
\hline 66 & 1 & 0.2 & 285 & 64.8 \\
\hline 70 & 3 & 0.7 & 288 & 65.5 \\
\hline 75 & 4 & 0.9 & 292 & 66.4 \\
\hline 80 & 10 & 2.3 & 302 & 68.6 \\
\hline 85 & 3 & 0.7 & 305 & 69.3 \\
\hline 90 & 10 & 2.3 & 315 & 71.6 \\
\hline 92 & 1 & 0.2 & 316 & 71.8 \\
\hline 95 & 3 & 0.7 & 319 & 72.5 \\
\hline 98 & 4 & 0.9 & 323 & 73.4 \\
\hline 99 & 2 & 0.5 & 325 & 73.9 \\
\hline 100 & 115 & 26.1 & 440 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 39} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW7 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 2 & 0.4 & 2 & 0.4 \\
\hline 2 & 1 & 0.2 & 3 & 0.7 \\
\hline 3 & 13 & 2.9 & 16 & 3.6 \\
\hline 4 & 1 & 0.2 & 17 & 3.8 \\
\hline 5 & 13 & 2.9 & 30 & 6.7 \\
\hline 6 & 1 & 0.2 & 31 & 6.9 \\
\hline 10 & 8 & 1.8 & 39 & 8.7 \\
\hline 15 & 3 & 0.7 & 42 & 9.4 \\
\hline 20 & 3 & 0.7 & 45 & 10.0 \\
\hline 25 & 4 & 0.9 & 49 & 10.9 \\
\hline 30 & 6 & 1.3 & 55 & 12.2 \\
\hline 33 & 2 & 0.4 & 57 & 12.7 \\
\hline 35 & 1 & 0.2 & 58 & 12.9 \\
\hline 40 & 5 & 1.1 & 63 & 14.0 \\
\hline 45 & 2 & 0.4 & 65 & 14.5 \\
\hline 50 & 10 & 2.2 & 75 & 16.7 \\
\hline 60 & 4 & 0.9 & 79 & 17.6 \\
\hline 65 & 5 & 1.1 & 84 & 18.7 \\
\hline 66 & 2 & 0.4 & 86 & 19.2 \\
\hline 70 & 7 & 1.6 & 93 & 20.7 \\
\hline 75 & 16 & 3.6 & 109 & 24.3 \\
\hline 80 & 21 & 4.7 & 130 & 29.0 \\
\hline 85 & 4 & 0.9 & 134 & 29.8 \\
\hline 90 & 31 & 6.9 & 165 & 36.7 \\
\hline 94 & 1 & 0.2 & 166 & 37.0 \\
\hline 95 & 12 & 2.7 & 178 & 39.6 \\
\hline 98 & 4 & 0.9 & 182 & 40.5 \\
\hline 99 & 2 & 0.4 & 184 & 41.0 \\
\hline 100 & 265 & 59.0 & 449 & 100.0 \\
\hline & Freque & cy Missin & \(g=30\) & \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Aug Sat & \\
LW8 & Frequency & & Cercent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Aug Sun & \\
LW9 & Frequency & & Cercent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW10 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 1 & 0.2 & 1 & 0.2 \\
\hline 5 & 3 & 0.7 & 4 & 0.9 \\
\hline 6 & 1 & 0.2 & 5 & 1.1 \\
\hline 10 & 5 & 1.1 & 10 & 2.2 \\
\hline 20 & 3 & 0.7 & 13 & 2.9 \\
\hline 25 & 3 & 0.7 & 16 & 3.6 \\
\hline 30 & 4 & 0.9 & 20 & 4.4 \\
\hline 33 & 2 & 0.4 & 22 & 4.9 \\
\hline 35 & 1 & 0.2 & 23 & 5.1 \\
\hline 40 & 4 & 0.9 & 27 & 6.0 \\
\hline 45 & 3 & 0.7 & 30 & 6.7 \\
\hline 50 & 8 & 1.8 & 38 & 8.4 \\
\hline 60 & 4 & 0.9 & 42 & 9.3 \\
\hline 65 & 5 & 1.1 & 47 & 10.4 \\
\hline 66 & 2 & 0.4 & 49 & 10.9 \\
\hline 70 & 10 & 2.2 & 59 & 13.1 \\
\hline 75 & 14 & 3.1 & 73 & 16.2 \\
\hline 80 & 22 & 4.9 & 95 & 21.1 \\
\hline 85 & 5 & 1.1 & 100 & 22.2 \\
\hline 90 & 48 & 10.7 & 148 & 32.9 \\
\hline 95 & 16 & 3.6 & 164 & 36.4 \\
\hline 98 & 4 & 0.9 & 168 & 37.3 \\
\hline 99 & 2 & 0.4 & 170 & 37.8 \\
\hline 100 & 280 & 62.2 & 450 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 29} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW11 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 70 & 15.8 & 70 & 15.8 \\
\hline 0.5 & 1 & 0.2 & 71 & 16.1 \\
\hline 1 & 9 & 2.0 & 80 & 18.1 \\
\hline 2 & 28 & 6.3 & 108 & 24.4 \\
\hline 3 & 17 & 3.8 & 125 & 28.3 \\
\hline 5 & 28 & 6.3 & 153 & 34.6 \\
\hline 6 & 1 & 0.2 & 154 & 34.8 \\
\hline 8 & 1 & 0.2 & 155 & 35.1 \\
\hline 10 & 10 & 2.3 & 165 & 37.3 \\
\hline 13 & 1 & 0.2 & 166 & 37.6 \\
\hline 15 & 6 & 1.4 & 172 & 38.9 \\
\hline 20 & 12 & 2.7 & 184 & 41.6 \\
\hline 25 & 3 & 0.7 & 187 & 42.3 \\
\hline 30 & 11 & 2.5 & 198 & 44.8 \\
\hline 33 & 1 & 0.2 & 199 & 45.0 \\
\hline 40 & 5 & 1.1 & 204 & 46.2 \\
\hline 45 & 2 & 0.5 & 206 & 46.6 \\
\hline 50 & 13 & 2.9 & 219 & 49.5 \\
\hline 60 & 2 & 0.5 & 221 & 50.0 \\
\hline 65 & 4 & 0.9 & 225 & 50.9 \\
\hline 66 & 2 & 0.5 & 227 & 51.4 \\
\hline 70 & 2 & 0.5 & 229 & 51.8 \\
\hline 75 & 7 & 1.6 & 236 & 53.4 \\
\hline 80 & 15 & 3.4 & 251 & 56.8 \\
\hline 85 & 3 & 0.7 & 254 & 57.5 \\
\hline 90 & 14 & 3.2 & 268 & 60.6 \\
\hline 95 & 5 & 1.1 & 273 & 61.8 \\
\hline 98 & 4 & 0.9 & 277 & 62.7 \\
\hline 99 & 1 & 0.2 & 278 & 62.9 \\
\hline 100 & 164 & 37.1 & 442 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW12 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 113 & 25.6 & 113 & 25.6 \\
\hline 0.5 & 1 & 0.2 & 114 & 25.9 \\
\hline 1 & 16 & 3.6 & 130 & 29.5 \\
\hline 2 & 31 & 7.0 & 161 & 36.5 \\
\hline 3 & 20 & 4.5 & 181 & 41.0 \\
\hline 5 & 35 & 7.9 & 216 & 49.0 \\
\hline 7 & 1 & 0.2 & 217 & 49.2 \\
\hline 8 & 1 & 0.2 & 218 & 49.4 \\
\hline 10 & 15 & 3.4 & 233 & 52.8 \\
\hline 13 & 1 & 0.2 & 234 & 53.1 \\
\hline 15 & 5 & 1.1 & 239 & 54.2 \\
\hline 20 & 8 & 1.8 & 247 & 56.0 \\
\hline 25 & 3 & 0.7 & 250 & 56.7 \\
\hline 30 & 11 & 2.5 & 261 & 59.2 \\
\hline 33 & 1 & 0.2 & 262 & 59.4 \\
\hline 40 & 4 & 0.9 & 266 & 60.3 \\
\hline 45 & 1 & 0.2 & 267 & 60.5 \\
\hline 50 & 12 & 2.7 & 279 & 63.3 \\
\hline 60 & 4 & 0.9 & 283 & 64.2 \\
\hline 65 & 3 & 0.7 & 286 & 64.9 \\
\hline 66 & 1 & 0.2 & 287 & 65.1 \\
\hline 70 & 3 & 0.7 & 290 & 65.8 \\
\hline 75 & 5 & 1.1 & 295 & 66.9 \\
\hline 80 & 11 & 2.5 & 306 & 69.4 \\
\hline 85 & 3 & 0.7 & 309 & 70.1 \\
\hline 90 & 9 & 2.0 & 318 & 72.1 \\
\hline 95 & 3 & 0.7 & 321 & 72.8 \\
\hline 98 & 4 & 0.9 & 325 & 73.7 \\
\hline 99 & 1 & 0.2 & 326 & 73.9 \\
\hline 100 & 115 & 26.1 & 441 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Holiday & \\
LW13 & Frequency & & Cercent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF014 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 241 & 53.8 & 241 & 53.8 \\
\hline 0.5 & 2 & 0.4 & 243 & 54.2 \\
\hline 0.7 & 1 & 0.2 & 244 & 54.5 \\
\hline 1 & 38 & 8.5 & 282 & 62.9 \\
\hline 2 & 25 & 5.6 & 307 & 68.5 \\
\hline 3 & 16 & 3.6 & 323 & 72.1 \\
\hline 4 & 1 & 0.2 & 324 & 72.3 \\
\hline 5 & 49 & 10.9 & 373 & 83.3 \\
\hline 6 & 1 & 0.2 & 374 & 83.5 \\
\hline 7 & 1 & 0.2 & 375 & 83.7 \\
\hline 8 & 2 & 0.4 & 377 & 84.2 \\
\hline 10 & 30 & 6.7 & 407 & 90.8 \\
\hline 12 & 2 & 0.4 & 409 & 91.3 \\
\hline 13 & 1 & 0.2 & 410 & 91.5 \\
\hline 15 & 6 & 1.3 & 416 & 92.9 \\
\hline 18 & 1 & 0.2 & 417 & 93.1 \\
\hline 20 & 2 & 0.4 & 419 & 93.5 \\
\hline 25 & 4 & 0.9 & 423 & 94.4 \\
\hline 30 & 6 & 1.3 & 429 & 95.8 \\
\hline 40 & 1 & 0.2 & 430 & 96.0 \\
\hline 50 & 5 & 1.1 & 435 & 97.1 \\
\hline 65 & 1 & 0.2 & 436 & 97.3 \\
\hline 80 & 1 & 0.2 & 437 & 97.5 \\
\hline 90 & 1 & 0.2 & 438 & 97.8 \\
\hline 95 & 1 & 0.2 & 439 & 98.0 \\
\hline 100 & 9 & 2.0 & 448 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 31} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF025 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 117 & 26.7 & 117 & 26.7 \\
\hline 0.5 & 3 & 0.7 & 120 & 27.4 \\
\hline 0.7 & 1 & 0.2 & 121 & 27.6 \\
\hline 1 & 45 & 10.3 & 166 & 37.9 \\
\hline 2 & 42 & 9.6 & 208 & 47.5 \\
\hline 3 & 14 & 3.2 & 222 & 50.7 \\
\hline 4 & 2 & 0.5 & 224 & 51.1 \\
\hline 5 & 50 & 11.4 & 274 & 62.6 \\
\hline 7 & 3 & 0.7 & 277 & 63.2 \\
\hline 8 & 3 & 0.7 & 280 & 63.9 \\
\hline 10 & 54 & 12.3 & 334 & 76.3 \\
\hline 12 & 1 & 0.2 & 335 & 76.5 \\
\hline 13 & 1 & 0.2 & 336 & 76.7 \\
\hline 15 & 19 & 4.3 & 355 & 81.1 \\
\hline 20 & 21 & 4.8 & 376 & 85.8 \\
\hline 25 & 9 & 2.1 & 385 & 87.9 \\
\hline 30 & 7 & 1.6 & 392 & 89.5 \\
\hline 40 & 4 & 0.9 & 396 & 90.4 \\
\hline 50 & 4 & 0.9 & 400 & 91.3 \\
\hline 60 & 19 & 4.3 & 419 & 95.7 \\
\hline 65 & 1 & 0.2 & 420 & 95.9 \\
\hline 80 & 2 & 0.5 & 422 & 96.3 \\
\hline 85 & 1 & 0.2 & 423 & 96.6 \\
\hline 88 & 1 & 0.2 & 424 & 96.8 \\
\hline 90 & 1 & 0.2 & 425 & 97.0 \\
\hline 100 & 13 & 3.0 & 438 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=41\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017A & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 241 & 55.1 & 241 & 55.1 \\
\hline 0.5 & 1 & 0.2 & 242 & 55.4 \\
\hline 1 & 23 & 5.3 & 265 & 60.6 \\
\hline 2 & 19 & 4.3 & 284 & 65.0 \\
\hline 3 & 4 & 0.9 & 288 & 65.9 \\
\hline 4 & 1 & 0.2 & 289 & 66.1 \\
\hline 5 & 34 & 7.8 & 323 & 73.9 \\
\hline 8 & 1 & 0.2 & 324 & 74.1 \\
\hline 10 & 16 & 3.7 & 340 & 77.8 \\
\hline 12 & 1 & 0.2 & 341 & 78.0 \\
\hline 13 & 1 & 0.2 & 342 & 78.3 \\
\hline 15 & 6 & 1.4 & 348 & 79.6 \\
\hline 20 & 2 & 0.5 & 350 & 80.1 \\
\hline 25 & 3 & 0.7 & 353 & 80.8 \\
\hline 30 & 8 & 1.8 & 361 & 82.6 \\
\hline 33 & 1 & 0.2 & 362 & 82.8 \\
\hline 40 & 2 & 0.5 & 364 & 83.3 \\
\hline 50 & 20 & 4.6 & 384 & 87.9 \\
\hline 65 & 1 & 0.2 & 385 & 88.1 \\
\hline 75 & 1 & 0.2 & 386 & 88.3 \\
\hline 80 & 3 & 0.7 & 389 & 89.0 \\
\hline 90 & 2 & 0.5 & 391 & 89.5 \\
\hline 100 & 46 & 10.5 & 437 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 42} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017B & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 245 & 56.2 & 245 & 56.2 \\
\hline 0.5 & 1 & 0.2 & 246 & 56.4 \\
\hline 1 & 21 & 4.8 & 267 & 61.2 \\
\hline 2 & 19 & 4.4 & 286 & 65.6 \\
\hline 3 & 6 & 1.4 & 292 & 67.0 \\
\hline 4 & 1 & 0.2 & 293 & 67.2 \\
\hline 5 & 32 & 7.3 & 325 & 74.5 \\
\hline 8 & 1 & 0.2 & 326 & 74.8 \\
\hline 10 & 16 & 3.7 & 342 & 78.4 \\
\hline 12 & 1 & 0.2 & 343 & 78.7 \\
\hline 13 & 1 & 0.2 & 344 & 78.9 \\
\hline 15 & 6 & 1.4 & 350 & 80.3 \\
\hline 20 & 2 & 0.5 & 352 & 80.7 \\
\hline 25 & 3 & 0.7 & 355 & 81.4 \\
\hline 30 & 8 & 1.8 & 363 & 83.3 \\
\hline 33 & 1 & 0.2 & 364 & 83.5 \\
\hline 40 & 2 & 0.5 & 366 & 83.9 \\
\hline 50 & 19 & 4.4 & 385 & 88.3 \\
\hline 65 & 1 & 0.2 & 386 & 88.5 \\
\hline 75 & 2 & 0.5 & 388 & 89.0 \\
\hline 80 & 3 & 0.7 & 391 & 89.7 \\
\hline 90 & 2 & 0.5 & 393 & 90.1 \\
\hline 100 & 43 & 9.9 & 436 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=43\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017C & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 246 & 56.7 & 246 & 56.7 \\
\hline 0.5 & 1 & 0.2 & 247 & 56.9 \\
\hline 1 & 20 & 4.6 & 267 & 61.5 \\
\hline 2 & 19 & 4.4 & 286 & 65.9 \\
\hline 3 & 6 & 1.4 & 292 & 67.3 \\
\hline 4 & 1 & 0.2 & 293 & 67.5 \\
\hline 5 & 32 & 7.4 & 325 & 74.9 \\
\hline 8 & 1 & 0.2 & 326 & 75.1 \\
\hline 10 & 16 & 3.7 & 342 & 78.8 \\
\hline 12 & 1 & 0.2 & 343 & 79.0 \\
\hline 13 & 1 & 0.2 & 344 & 79.3 \\
\hline 15 & 6 & 1.4 & 350 & 80.6 \\
\hline 20 & 2 & 0.5 & 352 & 81.1 \\
\hline 25 & 3 & 0.7 & 355 & 81.8 \\
\hline 30 & 8 & 1.8 & 363 & 83.6 \\
\hline 33 & 1 & 0.2 & 364 & 83.9 \\
\hline 40 & 2 & 0.5 & 366 & 84.3 \\
\hline 50 & 19 & 4.4 & 385 & 88.7 \\
\hline 65 & 1 & 0.2 & 386 & 88.9 \\
\hline 75 & 2 & 0.5 & 388 & 89.4 \\
\hline 80 & 2 & 0.5 & 390 & 89.9 \\
\hline 90 & 2 & 0.5 & 392 & 90.3 \\
\hline 100 & 42 & 9.7 & 434 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=45\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline LF017E & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 231 & 53.5 & 231 & 53.5 \\
\hline 0.5 & 1 & 0.2 & 232 & 53.7 \\
\hline 1 & 20 & 4.6 & 252 & 58.3 \\
\hline 2 & 18 & 4.2 & 270 & 62.5 \\
\hline 3 & 6 & 1.4 & 276 & 63.9 \\
\hline 4 & 1 & 0.2 & 277 & 64.1 \\
\hline 5 & 32 & 7.4 & 309 & 71.5 \\
\hline 8 & 1 & 0.2 & 310 & 71.8 \\
\hline 10 & 16 & 3.7 & 326 & 75.5 \\
\hline 12 & 1 & 0.2 & 327 & 75.7 \\
\hline 13 & 1 & 0.2 & 328 & 75.9 \\
\hline 15 & 6 & 1.4 & 334 & 77.3 \\
\hline 20 & 2 & 0.5 & 336 & 77.8 \\
\hline 25 & 5 & 1.2 & 341 & 78.9 \\
\hline 30 & 8 & 1.9 & 349 & 80.8 \\
\hline 33 & 1 & 0.2 & 350 & 81.0 \\
\hline 40 & 2 & 0.5 & 352 & 81.5 \\
\hline 50 & 20 & 4.6 & 372 & 86.1 \\
\hline 60 & 3 & 0.7 & 375 & 86.8 \\
\hline 65 & 1 & 0.2 & 376 & 87.0 \\
\hline 75 & 2 & 0.5 & 378 & 87.5 \\
\hline 80 & 2 & 0.5 & 380 & 88.0 \\
\hline 90 & 2 & 0.5 & 382 & 88.4 \\
\hline 100 & 50 & 11.6 & 432 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 47} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 212 & 49.0 & 212 & 49.0 \\
\hline 1 & 20 & 4.6 & 232 & 53.6 \\
\hline 2 & 21 & 4.8 & 253 & 58.4 \\
\hline 3 & 5 & 1.2 & 258 & 59.6 \\
\hline 4 & 1 & 0.2 & 259 & 59.8 \\
\hline 5 & 29 & 6.7 & 288 & 66.5 \\
\hline 8 & 1 & 0.2 & 289 & 66.7 \\
\hline 10 & 13 & 3.0 & 302 & 69.7 \\
\hline 12 & 1 & 0.2 & 303 & 70.0 \\
\hline 13 & 1 & 0.2 & 304 & 70.2 \\
\hline 15 & 4 & 0.9 & 308 & 71.1 \\
\hline 20 & 1 & 0.2 & 309 & 71.4 \\
\hline 25 & 3 & 0.7 & 312 & 72.1 \\
\hline 30 & 15 & 3.5 & 327 & 75.5 \\
\hline 33 & 1 & 0.2 & 328 & 75.8 \\
\hline 40 & 3 & 0.7 & 331 & 76.4 \\
\hline 50 & 6 & 1.4 & 337 & 77.8 \\
\hline 60 & 5 & 1.2 & 342 & 79.0 \\
\hline 65 & 2 & 0.5 & 344 & 79.4 \\
\hline 70 & 2 & 0.5 & 346 & 79.9 \\
\hline 75 & 1 & 0.2 & 347 & 80.1 \\
\hline 80 & 4 & 0.9 & 351 & 81.1 \\
\hline 90 & 4 & 0.9 & 355 & 82.0 \\
\hline 98 & 1 & 0.2 & 356 & 82.2 \\
\hline 100 & 77 & 17.8 & 433 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=46\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017G & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 161 & 37.1 & 161 & 37.1 \\
\hline 1 & 19 & 4.4 & 180 & 41.5 \\
\hline 2 & 14 & 3.2 & 194 & 44.7 \\
\hline 3 & 3 & 0.7 & 197 & 45.4 \\
\hline 5 & 25 & 5.8 & 222 & 51.2 \\
\hline 7 & 1 & 0.2 & 223 & 51.4 \\
\hline 8 & 1 & 0.2 & 224 & 51.6 \\
\hline 9 & 1 & 0.2 & 225 & 51.8 \\
\hline 10 & 13 & 3.0 & 238 & 54.8 \\
\hline 12 & 1 & 0.2 & 239 & 55.1 \\
\hline 15 & 4 & 0.9 & 243 & 56.0 \\
\hline 25 & 5 & 1.2 & 248 & 57.1 \\
\hline 30 & 28 & 6.5 & 276 & 63.6 \\
\hline 40 & 2 & 0.5 & 278 & 64.1 \\
\hline 50 & 10 & 2.3 & 288 & 66.4 \\
\hline 60 & 5 & 1.2 & 293 & 67.5 \\
\hline 65 & 2 & 0.5 & 295 & 68.0 \\
\hline 66 & 1 & 0.2 & 296 & 68.2 \\
\hline 70 & 5 & 1.2 & 301 & 69.4 \\
\hline 75 & 4 & 0.9 & 305 & 70.3 \\
\hline 80 & 7 & 1.6 & 312 & 71.9 \\
\hline 85 & 1 & 0.2 & 313 & 72.1 \\
\hline 90 & 10 & 2.3 & 323 & 74.4 \\
\hline 95 & 4 & 0.9 & 327 & 75.3 \\
\hline 98 & 1 & 0.2 & 328 & 75.6 \\
\hline 100 & 106 & 24.4 & 434 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017H & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 95 & 21.7 & 95 & 21.7 \\
\hline 1 & 17 & 3.9 & 112 & 25.6 \\
\hline 2 & 3 & 0.7 & 115 & 26.3 \\
\hline 3 & 1 & 0.2 & 116 & 26.5 \\
\hline 5 & 21 & 4.8 & 137 & 31.4 \\
\hline 6 & 1 & 0.2 & 138 & 31.6 \\
\hline 7 & 3 & 0.7 & 141 & 32.3 \\
\hline 10 & 10 & 2.3 & 151 & 34.6 \\
\hline 15 & 3 & 0.7 & 154 & 35.2 \\
\hline 20 & 3 & 0.7 & 157 & 35.9 \\
\hline 25 & 4 & 0.9 & 161 & 36.8 \\
\hline 30 & 27 & 6.2 & 188 & 43.0 \\
\hline 40 & 4 & 0.9 & 192 & 43.9 \\
\hline 50 & 8 & 1.8 & 200 & 45.8 \\
\hline 54 & 1 & 0.2 & 201 & 46.0 \\
\hline 60 & 6 & 1.4 & 207 & 47.4 \\
\hline 65 & 2 & 0.5 & 209 & 47.8 \\
\hline 66 & 1 & 0.2 & 210 & 48.1 \\
\hline 70 & 4 & 0.9 & 214 & 49.0 \\
\hline 75 & 5 & 1.1 & 219 & 50.1 \\
\hline 80 & 15 & 3.4 & 234 & 53.5 \\
\hline 85 & 2 & 0.5 & 236 & 54.0 \\
\hline 90 & 12 & 2.7 & 248 & 56.8 \\
\hline 95 & 7 & 1.6 & 255 & 58.4 \\
\hline 98 & 1 & 0.2 & 256 & 58.6 \\
\hline 99 & 2 & 0.5 & 258 & 59.0 \\
\hline 100 & 179 & 41.0 & 437 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=42\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017I & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 66 & 15.1 & 66 & 15.1 \\
\hline 1 & 20 & 4.6 & 86 & 19.6 \\
\hline 3 & 1 & 0.2 & 87 & 19.9 \\
\hline 5 & 17 & 3.9 & 104 & 23.7 \\
\hline 6 & 1 & 0.2 & 105 & 24.0 \\
\hline 7 & 2 & 0.5 & 107 & 24.4 \\
\hline 10 & 9 & 2.1 & 116 & 26.5 \\
\hline 15 & 1 & 0.2 & 117 & 26.7 \\
\hline 20 & 3 & 0.7 & 120 & 27.4 \\
\hline 25 & 5 & 1.1 & 125 & 28.5 \\
\hline 30 & 28 & 6.4 & 153 & 34.9 \\
\hline 40 & 2 & 0.5 & 155 & 35.4 \\
\hline 50 & 7 & 1.6 & 162 & 37.0 \\
\hline 60 & 6 & 1.4 & 168 & 38.4 \\
\hline 65 & 2 & 0.5 & 170 & 38.8 \\
\hline 66 & 2 & 0.5 & 172 & 39.3 \\
\hline 70 & 3 & 0.7 & 175 & 40.0 \\
\hline 75 & 5 & 1.1 & 180 & 41.1 \\
\hline 80 & 16 & 3.7 & 196 & 44.7 \\
\hline 85 & 2 & 0.5 & 198 & 45.2 \\
\hline 90 & 11 & 2.5 & 209 & 47.7 \\
\hline 95 & 7 & 1.6 & 216 & 49.3 \\
\hline 98 & 1 & 0.2 & 217 & 49.5 \\
\hline 99 & 2 & 0.5 & 219 & 50.0 \\
\hline 100 & 219 & 50.0 & 438 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=41\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017J & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 56 & 12.8 & 56 & 12.8 \\
\hline 1 & 22 & 5.0 & 78 & 17.8 \\
\hline 3 & 1 & 0.2 & 79 & 18.0 \\
\hline 5 & 16 & 3.6 & 95 & 21.6 \\
\hline 7 & 2 & 0.5 & 97 & 22.1 \\
\hline 10 & 7 & 1.6 & 104 & 23.7 \\
\hline 15 & 1 & 0.2 & 105 & 23.9 \\
\hline 20 & 2 & 0.5 & 107 & 24.4 \\
\hline 25 & 5 & 1.1 & 112 & 25.5 \\
\hline 30 & 27 & 6.2 & 139 & 31.7 \\
\hline 40 & 2 & 0.5 & 141 & 32.1 \\
\hline 45 & 1 & 0.2 & 142 & 32.3 \\
\hline 50 & 7 & 1.6 & 149 & 33.9 \\
\hline 60 & 6 & 1.4 & 155 & 35.3 \\
\hline 65 & 2 & 0.5 & 157 & 35.8 \\
\hline 66 & 2 & 0.5 & 159 & 36.2 \\
\hline 70 & 3 & 0.7 & 162 & 36.9 \\
\hline 75 & 5 & 1.1 & 167 & 38.0 \\
\hline 80 & 17 & 3.9 & 184 & 41.9 \\
\hline 85 & 2 & 0.5 & 186 & 42.4 \\
\hline 90 & 11 & 2.5 & 197 & 44.9 \\
\hline 95 & 8 & 1.8 & 205 & 46.7 \\
\hline 98 & 1 & 0.2 & 206 & 46.9 \\
\hline 99 & 2 & 0.5 & 208 & 47.4 \\
\hline 100 & 231 & 52.6 & 439 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017K & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 55 & 12.5 & 55 & 12.5 \\
\hline 1 & 22 & 5.0 & 77 & 17.5 \\
\hline 3 & 1 & 0.2 & 78 & 17.8 \\
\hline 5 & 15 & 3.4 & 93 & 21.2 \\
\hline 7 & 2 & 0.5 & 95 & 21.6 \\
\hline 10 & 8 & 1.8 & 103 & 23.5 \\
\hline 15 & 1 & 0.2 & 104 & 23.7 \\
\hline 20 & 1 & 0.2 & 105 & 23.9 \\
\hline 25 & 5 & 1.1 & 110 & 25.1 \\
\hline 30 & 26 & 5.9 & 136 & 31.0 \\
\hline 40 & 2 & 0.5 & 138 & 31.4 \\
\hline 45 & 1 & 0.2 & 139 & 31.7 \\
\hline 50 & 7 & 1.6 & 146 & 33.3 \\
\hline 60 & 6 & 1.4 & 152 & 34.6 \\
\hline 65 & 2 & 0.5 & 154 & 35.1 \\
\hline 66 & 2 & 0.5 & 156 & 35.5 \\
\hline 70 & 3 & 0.7 & 159 & 36.2 \\
\hline 75 & 6 & 1.4 & 165 & 37.6 \\
\hline 80 & 17 & 3.9 & 182 & 41.5 \\
\hline 85 & 2 & 0.5 & 184 & 41.9 \\
\hline 90 & 11 & 2.5 & 195 & 44.4 \\
\hline 95 & 8 & 1.8 & 203 & 46.2 \\
\hline 98 & 1 & 0.2 & 204 & 46.5 \\
\hline 99 & 2 & 0.5 & 206 & 46.9 \\
\hline 100 & 233 & 53.1 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017L & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 53 & 12.1 & 53 & 12.1 \\
\hline 1 & 21 & 4.8 & 74 & 16.9 \\
\hline 2 & 13 & 3.0 & 87 & 19.8 \\
\hline 3 & 1 & 0.2 & 88 & 20.0 \\
\hline 5 & 16 & 3.6 & 104 & 23.7 \\
\hline 7 & 2 & 0.5 & 106 & 24.1 \\
\hline 10 & 8 & 1.8 & 114 & 26.0 \\
\hline 15 & 1 & 0.2 & 115 & 26.2 \\
\hline 20 & 1 & 0.2 & 116 & 26.4 \\
\hline 25 & 4 & 0.9 & 120 & 27.3 \\
\hline 30 & 13 & 3.0 & 133 & 30.3 \\
\hline 40 & 2 & 0.5 & 135 & 30.8 \\
\hline 45 & 1 & 0.2 & 136 & 31.0 \\
\hline 50 & 12 & 2.7 & 148 & 33.7 \\
\hline 60 & 6 & 1.4 & 154 & 35.1 \\
\hline 65 & 2 & 0.5 & 156 & 35.5 \\
\hline 66 & 2 & 0.5 & 158 & 36.0 \\
\hline 70 & 3 & 0.7 & 161 & 36.7 \\
\hline 75 & 6 & 1.4 & 167 & 38.0 \\
\hline 80 & 18 & 4.1 & 185 & 42.1 \\
\hline 85 & 2 & 0.5 & 187 & 42.6 \\
\hline 90 & 12 & 2.7 & 199 & 45.3 \\
\hline 95 & 8 & 1.8 & 207 & 47.2 \\
\hline 98 & 1 & 0.2 & 208 & 47.4 \\
\hline 99 & 2 & 0.5 & 210 & 47.8 \\
\hline 100 & 229 & 52.2 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017M & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 52 & 11.8 & 52 & 11.8 \\
\hline 1 & 21 & 4.8 & 73 & 16.6 \\
\hline 2 & 13 & 3.0 & 86 & 19.6 \\
\hline 3 & 1 & 0.2 & 87 & 19.8 \\
\hline 5 & 17 & 3.9 & 104 & 23.7 \\
\hline 7 & 2 & 0.5 & 106 & 24.1 \\
\hline 10 & 9 & 2.1 & 115 & 26.2 \\
\hline 15 & 1 & 0.2 & 116 & 26.4 \\
\hline 20 & 1 & 0.2 & 117 & 26.7 \\
\hline 25 & 4 & 0.9 & 121 & 27.6 \\
\hline 30 & 13 & 3.0 & 134 & 30.5 \\
\hline 40 & 2 & 0.5 & 136 & 31.0 \\
\hline 45 & 1 & 0.2 & 137 & 31.2 \\
\hline 50 & 7 & 1.6 & 144 & 32.8 \\
\hline 60 & 6 & 1.4 & 150 & 34.2 \\
\hline 64 & 1 & 0.2 & 151 & 34.4 \\
\hline 65 & 1 & 0.2 & 152 & 34.6 \\
\hline 66 & 2 & 0.5 & 154 & 35.1 \\
\hline 70 & 3 & 0.7 & 157 & 35.8 \\
\hline 75 & 6 & 1.4 & 163 & 37.1 \\
\hline 80 & 18 & 4.1 & 181 & 41.2 \\
\hline 85 & 2 & 0.5 & 183 & 41.7 \\
\hline 90 & 12 & 2.7 & 195 & 44.4 \\
\hline 95 & 8 & 1.8 & 203 & 46.2 \\
\hline 98 & 1 & 0.2 & 204 & 46.5 \\
\hline 99 & 2 & 0.5 & 206 & 46.9 \\
\hline 100 & 233 & 53.1 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 56 & 12.8 & 56 & 12.8 \\
\hline 1 & 21 & 4.8 & 77 & 17.5 \\
\hline 2 & 13 & 3.0 & 90 & 20.5 \\
\hline 3 & 1 & 0.2 & 91 & 20.7 \\
\hline 5 & 19 & 4.3 & 110 & 25.1 \\
\hline 7 & 2 & 0.5 & 112 & 25.5 \\
\hline 10 & 7 & 1.6 & 119 & 27.1 \\
\hline 15 & 1 & 0.2 & 120 & 27.3 \\
\hline 20 & 1 & 0.2 & 121 & 27.6 \\
\hline 25 & 3 & 0.7 & 124 & 28.2 \\
\hline 30 & 13 & 3.0 & 137 & 31.2 \\
\hline 40 & 2 & 0.5 & 139 & 31.7 \\
\hline 50 & 7 & 1.6 & 146 & 33.3 \\
\hline 60 & 6 & 1.4 & 152 & 34.6 \\
\hline 65 & 2 & 0.5 & 154 & 35.1 \\
\hline 66 & 2 & 0.5 & 156 & 35.5 \\
\hline 70 & 3 & 0.7 & 159 & 36.2 \\
\hline 75 & 6 & 1.4 & 165 & 37.6 \\
\hline 80 & 18 & 4.1 & 183 & 41.7 \\
\hline 85 & 2 & 0.5 & 185 & 42.1 \\
\hline 90 & 12 & 2.7 & 197 & 44.9 \\
\hline 95 & 8 & 1.8 & 205 & 46.7 \\
\hline 98 & 1 & 0.2 & 206 & 46.9 \\
\hline 99 & 2 & 0.5 & 208 & 47.4 \\
\hline 100 & 231 & 52.6 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF0170 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 60 & 13.7 & 60 & 13.7 \\
\hline 1 & 21 & 4.8 & 81 & 18.5 \\
\hline 2 & 13 & 3.0 & 94 & 21.4 \\
\hline 3 & 1 & 0.2 & 95 & 21.6 \\
\hline 5 & 17 & 3.9 & 112 & 25.5 \\
\hline 7 & 2 & 0.5 & 114 & 26.0 \\
\hline 10 & 7 & 1.6 & 121 & 27.6 \\
\hline 15 & 1 & 0.2 & 122 & 27.8 \\
\hline 20 & 2 & 0.5 & 124 & 28.2 \\
\hline 25 & 3 & 0.7 & 127 & 28.9 \\
\hline 30 & 13 & 3.0 & 140 & 31.9 \\
\hline 40 & 2 & 0.5 & 142 & 32.3 \\
\hline 50 & 7 & 1.6 & 149 & 33.9 \\
\hline 60 & 6 & 1.4 & 155 & 35.3 \\
\hline 65 & 2 & 0.5 & 157 & 35.8 \\
\hline 66 & 2 & 0.5 & 159 & 36.2 \\
\hline 70 & 3 & 0.7 & 162 & 36.9 \\
\hline 75 & 6 & 1.4 & 168 & 38.3 \\
\hline 80 & 17 & 3.9 & 185 & 42.1 \\
\hline 85 & 2 & 0.5 & 187 & 42.6 \\
\hline 90 & 11 & 2.5 & 198 & 45.1 \\
\hline 95 & 8 & 1.8 & 206 & 46.9 \\
\hline 98 & 1 & 0.2 & 207 & 47.2 \\
\hline 99 & 2 & 0.5 & 209 & 47.6 \\
\hline 100 & 230 & 52.4 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017P & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 83 & 18.9 & 83 & 18.9 \\
\hline 1 & 20 & 4.6 & 103 & 23.5 \\
\hline 2 & 15 & 3.4 & 118 & 26.9 \\
\hline 5 & 9 & 2.1 & 127 & 28.9 \\
\hline 7 & 2 & 0.5 & 129 & 29.4 \\
\hline 10 & 5 & 1.1 & 134 & 30.5 \\
\hline 15 & 1 & 0.2 & 135 & 30.8 \\
\hline 20 & 1 & 0.2 & 136 & 31.0 \\
\hline 25 & 2 & 0.5 & 138 & 31.4 \\
\hline 30 & 3 & 0.7 & 141 & 32.1 \\
\hline 40 & 2 & 0.5 & 143 & 32.6 \\
\hline 50 & 6 & 1.4 & 149 & 33.9 \\
\hline 54 & 1 & 0.2 & 150 & 34.2 \\
\hline 60 & 6 & 1.4 & 156 & 35.5 \\
\hline 65 & 2 & 0.5 & 158 & 36.0 \\
\hline 66 & 2 & 0.5 & 160 & 36.4 \\
\hline 70 & 3 & 0.7 & 163 & 37.1 \\
\hline 75 & 6 & 1.4 & 169 & 38.5 \\
\hline 80 & 17 & 3.9 & 186 & 42.4 \\
\hline 85 & 2 & 0.5 & 188 & 42.8 \\
\hline 90 & 9 & 2.1 & 197 & 44.9 \\
\hline 95 & 9 & 2.1 & 206 & 46.9 \\
\hline 98 & 1 & 0.2 & 207 & 47.2 \\
\hline 99 & 2 & 0.5 & 209 & 47.6 \\
\hline 100 & 230 & 52.4 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017Q & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 87 & 19.9 & 87 & 19.9 \\
\hline 1 & 20 & 4.6 & 107 & 24.4 \\
\hline 2 & 17 & 3.9 & 124 & 28.3 \\
\hline 5 & 8 & 1.8 & 132 & 30.1 \\
\hline 7 & 2 & 0.5 & 134 & 30.6 \\
\hline 8 & 1 & 0.2 & 135 & 30.8 \\
\hline 10 & 4 & 0.9 & 139 & 31.7 \\
\hline 20 & 2 & 0.5 & 141 & 32.2 \\
\hline 25 & 2 & 0.5 & 143 & 32.6 \\
\hline 30 & 4 & 0.9 & 147 & 33.6 \\
\hline 40 & 2 & 0.5 & 149 & 34.0 \\
\hline 50 & 9 & 2.1 & 158 & 36.1 \\
\hline 60 & 6 & 1.4 & 164 & 37.4 \\
\hline 65 & 3 & 0.7 & 167 & 38.1 \\
\hline 66 & 2 & 0.5 & 169 & 38.6 \\
\hline 70 & 3 & 0.7 & 172 & 39.3 \\
\hline 75 & 6 & 1.4 & 178 & 40.6 \\
\hline 80 & 17 & 3.9 & 195 & 44.5 \\
\hline 85 & 2 & 0.5 & 197 & 45.0 \\
\hline 90 & 7 & 1.6 & 204 & 46.6 \\
\hline 95 & 9 & 2.1 & 213 & 48.6 \\
\hline 98 & 1 & 0.2 & 214 & 48.9 \\
\hline 99 & 2 & 0.5 & 216 & 49.3 \\
\hline 100 & 222 & 50.7 & 438 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 41} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017R & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 149 & 34.1 & 149 & 34.1 \\
\hline 1 & 21 & 4.8 & 170 & 38.9 \\
\hline 2 & 21 & 4.8 & 191 & 43.7 \\
\hline 3 & 1 & 0.2 & 192 & 43.9 \\
\hline 4 & 1 & 0.2 & 193 & 44.2 \\
\hline 5 & 8 & 1.8 & 201 & 46.0 \\
\hline 7 & 2 & 0.5 & 203 & 46.5 \\
\hline 8 & 1 & 0.2 & 204 & 46.7 \\
\hline 10 & 5 & 1.1 & 209 & 47.8 \\
\hline 15 & 1 & 0.2 & 210 & 48.1 \\
\hline 20 & 4 & 0.9 & 214 & 49.0 \\
\hline 25 & 1 & 0.2 & 215 & 49.2 \\
\hline 30 & 3 & 0.7 & 218 & 49.9 \\
\hline 40 & 2 & 0.5 & 220 & 50.3 \\
\hline 50 & 10 & 2.3 & 230 & 52.6 \\
\hline 60 & 6 & 1.4 & 236 & 54.0 \\
\hline 65 & 3 & 0.7 & 239 & 54.7 \\
\hline 66 & 2 & 0.5 & 241 & 55.1 \\
\hline 70 & 2 & 0.5 & 243 & 55.6 \\
\hline 75 & 5 & 1.1 & 248 & 56.8 \\
\hline 80 & 13 & 3.0 & 261 & 59.7 \\
\hline 85 & 2 & 0.5 & 263 & 60.2 \\
\hline 90 & 4 & 0.9 & 267 & 61.1 \\
\hline 95 & 7 & 1.6 & 274 & 62.7 \\
\hline 98 & 1 & 0.2 & 275 & 62.9 \\
\hline 99 & 1 & 0.2 & 276 & 63.2 \\
\hline 100 & 161 & 36.8 & 437 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=42\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017S & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 191 & 43.8 & 191 & 43.8 \\
\hline 1 & 22 & 5.0 & 213 & 48.9 \\
\hline 2 & 29 & 6.7 & 242 & 55.5 \\
\hline 3 & 1 & 0.2 & 243 & 55.7 \\
\hline 4 & 1 & 0.2 & 244 & 56.0 \\
\hline 5 & 19 & 4.4 & 263 & 60.3 \\
\hline 7 & 2 & 0.5 & 265 & 60.8 \\
\hline 8 & 1 & 0.2 & 266 & 61.0 \\
\hline 10 & 10 & 2.3 & 276 & 63.3 \\
\hline 12 & 1 & 0.2 & 277 & 63.5 \\
\hline 15 & 3 & 0.7 & 280 & 64.2 \\
\hline 20 & 3 & 0.7 & 283 & 64.9 \\
\hline 25 & 3 & 0.7 & 286 & 65.6 \\
\hline 30 & 3 & 0.7 & 289 & 66.3 \\
\hline 35 & 1 & 0.2 & 290 & 66.5 \\
\hline 40 & 1 & 0.2 & 291 & 66.7 \\
\hline 50 & 8 & 1.8 & 299 & 68.6 \\
\hline 60 & 5 & 1.1 & 304 & 69.7 \\
\hline 65 & 4 & 0.9 & 308 & 70.6 \\
\hline 66 & 1 & 0.2 & 309 & 70.9 \\
\hline 75 & 3 & 0.7 & 312 & 71.6 \\
\hline 80 & 5 & 1.1 & 317 & 72.7 \\
\hline 85 & 2 & 0.5 & 319 & 73.2 \\
\hline 90 & 3 & 0.7 & 322 & 73.9 \\
\hline 95 & 4 & 0.9 & 326 & 74.8 \\
\hline 98 & 1 & 0.2 & 327 & 75.0 \\
\hline 99 & 1 & 0.2 & 328 & 75.2 \\
\hline 100 & 108 & 24.8 & 436 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=43\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 178 & 40.9 & 178 & 40.9 \\
\hline 0.5 & 1 & 0.2 & 179 & 41.1 \\
\hline 1 & 25 & 5.7 & 204 & 46.9 \\
\hline 2 & 31 & 7.1 & 235 & 54.0 \\
\hline 3 & 2 & 0.5 & 237 & 54.5 \\
\hline 4 & 1 & 0.2 & 238 & 54.7 \\
\hline 5 & 24 & 5.5 & 262 & 60.2 \\
\hline 7 & 2 & 0.5 & 264 & 60.7 \\
\hline 8 & 1 & 0.2 & 265 & 60.9 \\
\hline 10 & 10 & 2.3 & 275 & 63.2 \\
\hline 12 & 1 & 0.2 & 276 & 63.4 \\
\hline 13 & 1 & 0.2 & 277 & 63.7 \\
\hline 15 & 3 & 0.7 & 280 & 64.4 \\
\hline 20 & 5 & 1.1 & 285 & 65.5 \\
\hline 25 & 1 & 0.2 & 286 & 65.7 \\
\hline 30 & 3 & 0.7 & 289 & 66.4 \\
\hline 35 & 1 & 0.2 & 290 & 66.7 \\
\hline 40 & 1 & 0.2 & 291 & 66.9 \\
\hline 50 & 8 & 1.8 & 299 & 68.7 \\
\hline 60 & 6 & 1.4 & 305 & 70.1 \\
\hline 65 & 3 & 0.7 & 308 & 70.8 \\
\hline 66 & 1 & 0.2 & 309 & 71.0 \\
\hline 75 & 4 & 0.9 & 313 & 72.0 \\
\hline 80 & 5 & 1.1 & 318 & 73.1 \\
\hline 85 & 1 & 0.2 & 319 & 73.3 \\
\hline 90 & 3 & 0.7 & 322 & 74.0 \\
\hline 95 & 2 & 0.5 & 324 & 74.5 \\
\hline 98 & 1 & 0.2 & 325 & 74.7 \\
\hline 100 & 110 & 25.3 & 435 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=44\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017U & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 182 & 41.7 & 182 & 41.7 \\
\hline 0.5 & 1 & 0.2 & 183 & 42.0 \\
\hline 1 & 25 & 5.7 & 208 & 47.7 \\
\hline 2 & 34 & 7.8 & 242 & 55.5 \\
\hline 3 & 3 & 0.7 & 245 & 56.2 \\
\hline 4 & 1 & 0.2 & 246 & 56.4 \\
\hline 5 & 27 & 6.2 & 273 & 62.6 \\
\hline 8 & 1 & 0.2 & 274 & 62.8 \\
\hline 10 & 11 & 2.5 & 285 & 65.4 \\
\hline 12 & 1 & 0.2 & 286 & 65.6 \\
\hline 13 & 1 & 0.2 & 287 & 65.8 \\
\hline 15 & 5 & 1.1 & 292 & 67.0 \\
\hline 20 & 4 & 0.9 & 296 & 67.9 \\
\hline 25 & 1 & 0.2 & 297 & 68.1 \\
\hline 30 & 5 & 1.1 & 302 & 69.3 \\
\hline 35 & 1 & 0.2 & 303 & 69.5 \\
\hline 40 & 1 & 0.2 & 304 & 69.7 \\
\hline 50 & 8 & 1.8 & 312 & 71.6 \\
\hline 60 & 4 & 0.9 & 316 & 72.5 \\
\hline 65 & 2 & 0.5 & 318 & 72.9 \\
\hline 66 & 1 & 0.2 & 319 & 73.2 \\
\hline 70 & 1 & 0.2 & 320 & 73.4 \\
\hline 75 & 4 & 0.9 & 324 & 74.3 \\
\hline 80 & 6 & 1.4 & 330 & 75.7 \\
\hline 90 & 3 & 0.7 & 333 & 76.4 \\
\hline 95 & 2 & 0.5 & 335 & 76.8 \\
\hline 98 & 1 & 0.2 & 336 & 77.1 \\
\hline 100 & 100 & 22.9 & 436 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=43\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017V & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 200 & 46.0 & 200 & 46.0 \\
\hline 0.5 & 1 & 0.2 & 201 & 46.2 \\
\hline 1 & 23 & 5.3 & 224 & 51.5 \\
\hline 2 & 34 & 7.8 & 258 & 59.3 \\
\hline 3 & 3 & 0.7 & 261 & 60.0 \\
\hline 4 & 1 & 0.2 & 262 & 60.2 \\
\hline 5 & 27 & 6.2 & 289 & 66.4 \\
\hline 8 & 1 & 0.2 & 290 & 66.7 \\
\hline 10 & 13 & 3.0 & 303 & 69.7 \\
\hline 12 & 1 & 0.2 & 304 & 69.9 \\
\hline 13 & 1 & 0.2 & 305 & 70.1 \\
\hline 15 & 5 & 1.1 & 310 & 71.3 \\
\hline 20 & 4 & 0.9 & 314 & 72.2 \\
\hline 25 & 1 & 0.2 & 315 & 72.4 \\
\hline 30 & 8 & 1.8 & 323 & 74.3 \\
\hline 35 & 1 & 0.2 & 324 & 74.5 \\
\hline 40 & 2 & 0.5 & 326 & 74.9 \\
\hline 50 & 7 & 1.6 & 333 & 76.6 \\
\hline 60 & 4 & 0.9 & 337 & 77.5 \\
\hline 65 & 2 & 0.5 & 339 & 77.9 \\
\hline 70 & 3 & 0.7 & 342 & 78.6 \\
\hline 75 & 4 & 0.9 & 346 & 79.5 \\
\hline 80 & 1 & 0.2 & 347 & 79.8 \\
\hline 90 & 2 & 0.5 & 349 & 80.2 \\
\hline 95 & 2 & 0.5 & 351 & 80.7 \\
\hline 98 & 1 & 0.2 & 352 & 80.9 \\
\hline 100 & 83 & 19.1 & 435 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=44\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017W & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 211 & 48.4 & 211 & 48.4 \\
\hline 0.5 & 1 & 0.2 & 212 & 48.6 \\
\hline 1 & 23 & 5.3 & 235 & 53.9 \\
\hline 2 & 34 & 7.8 & 269 & 61.7 \\
\hline 3 & 4 & 0.9 & 273 & 62.6 \\
\hline 4 & 1 & 0.2 & 274 & 62.8 \\
\hline 5 & 31 & 7.1 & 305 & 70.0 \\
\hline 8 & 1 & 0.2 & 306 & 70.2 \\
\hline 10 & 16 & 3.7 & 322 & 73.9 \\
\hline 12 & 1 & 0.2 & 323 & 74.1 \\
\hline 13 & 1 & 0.2 & 324 & 74.3 \\
\hline 15 & 6 & 1.4 & 330 & 75.7 \\
\hline 20 & 2 & 0.5 & 332 & 76.1 \\
\hline 25 & 2 & 0.5 & 334 & 76.6 \\
\hline 30 & 9 & 2.1 & 343 & 78.7 \\
\hline 33 & 1 & 0.2 & 344 & 78.9 \\
\hline 35 & 1 & 0.2 & 345 & 79.1 \\
\hline 40 & 2 & 0.5 & 347 & 79.6 \\
\hline 50 & 8 & 1.8 & 355 & 81.4 \\
\hline 60 & 1 & 0.2 & 356 & 81.7 \\
\hline 65 & 1 & 0.2 & 357 & 81.9 \\
\hline 75 & 3 & 0.7 & 360 & 82.6 \\
\hline 80 & 1 & 0.2 & 361 & 82.8 \\
\hline 90 & 1 & 0.2 & 362 & 83.0 \\
\hline 95 & 1 & 0.2 & 363 & 83.3 \\
\hline 98 & 1 & 0.2 & 364 & 83.5 \\
\hline 100 & 72 & 16.5 & 436 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=43\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF017X & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 236 & 53.8 & 236 & 53.8 \\
\hline 0.5 & 1 & 0.2 & 237 & 54.0 \\
\hline 1 & 26 & 5.9 & 263 & 59.9 \\
\hline 2 & 19 & 4.3 & 282 & 64.2 \\
\hline 3 & 4 & 0.9 & 286 & 65.1 \\
\hline 4 & 1 & 0.2 & 287 & 65.4 \\
\hline 5 & 30 & 6.8 & 317 & 72.2 \\
\hline 8 & 1 & 0.2 & 318 & 72.4 \\
\hline 10 & 17 & 3.9 & 335 & 76.3 \\
\hline 12 & 1 & 0.2 & 336 & 76.5 \\
\hline 13 & 1 & 0.2 & 337 & 76.8 \\
\hline 15 & 6 & 1.4 & 343 & 78.1 \\
\hline 20 & 2 & 0.5 & 345 & 78.6 \\
\hline 25 & 3 & 0.7 & 348 & 79.3 \\
\hline 30 & 8 & 1.8 & 356 & 81.1 \\
\hline 33 & 1 & 0.2 & 357 & 81.3 \\
\hline 40 & 2 & 0.5 & 359 & 81.8 \\
\hline 50 & 19 & 4.3 & 378 & 86.1 \\
\hline 65 & 1 & 0.2 & 379 & 86.3 \\
\hline 75 & 1 & 0.2 & 380 & 86.6 \\
\hline 80 & 3 & 0.7 & 383 & 87.2 \\
\hline 90 & 2 & 0.5 & 385 & 87.7 \\
\hline 98 & 1 & 0.2 & 386 & 87.9 \\
\hline 100 & 53 & 12.1 & 439 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=40\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
LF18 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
-0 & 98 & 21.6 & 98 & 21.6 \\
1 & 356 & 78.4 & 454 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020A & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 64 & 66.0 & 64 & 66.0 \\
\hline 1 & 4 & 4.1 & 68 & 70.1 \\
\hline 2 & 2 & 2.1 & 70 & 72.2 \\
\hline 3 & 1 & 1.0 & 71 & 73.2 \\
\hline 5 & 3 & 3.1 & 74 & 76.3 \\
\hline 10 & 4 & 4.1 & 78 & 80.4 \\
\hline 15 & 2 & 2.1 & 80 & 82.5 \\
\hline 25 & 1 & 1.0 & 81 & 83.5 \\
\hline 50 & 1 & 1.0 & 82 & 84.5 \\
\hline 75 & 1 & 1.0 & 83 & 85.6 \\
\hline 100 & 14 & 14.4 & 97 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=382\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020B & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 67 & 69.1 & 67 & 69.1 \\
\hline 1 & 3 & 3.1 & 70 & 72.2 \\
\hline 2 & 2 & 2.1 & 72 & 74.2 \\
\hline 3 & 1 & 1.0 & 73 & 75.3 \\
\hline 5 & 3 & 3.1 & 76 & 78.4 \\
\hline 10 & 4 & 4.1 & 80 & 82.5 \\
\hline 15 & 2 & 2.1 & 82 & 84.5 \\
\hline 25 & 1 & 1.0 & 83 & 85.6 \\
\hline 50 & 1 & 1.0 & 84 & 86.6 \\
\hline 75 & 1 & 1.0 & 85 & 87.6 \\
\hline 100 & 12 & 12.4 & 97 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=382\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020C & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 67 & 69.1 & 67 & 69.1 \\
\hline 1 & 3 & 3.1 & 70 & 72.2 \\
\hline 2 & 2 & 2.1 & 72 & 74.2 \\
\hline 3 & 1 & 1.0 & 73 & 75.3 \\
\hline 5 & 3 & 3.1 & 76 & 78.4 \\
\hline 10 & 4 & 4.1 & 80 & 82.5 \\
\hline 15 & 2 & 2.1 & 82 & 84.5 \\
\hline 25 & 1 & 1.0 & 83 & 85.6 \\
\hline 50 & 2 & 2.1 & 85 & 87.6 \\
\hline 75 & 1 & 1.0 & 86 & 88.7 \\
\hline 100 & 11 & 11.3 & 97 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=382\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 020D & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 67 & 69.1 & 67 & 69.1 \\
\hline 1 & 3 & 3.1 & 70 & 72.2 \\
\hline 2 & 2 & 2.1 & 72 & 74.2 \\
\hline 3 & 1 & 1.0 & 73 & 75.3 \\
\hline 5 & 3 & 3.1 & 76 & 78.4 \\
\hline 10 & 4 & 4.1 & 80 & 82.5 \\
\hline 15 & 2 & 2.1 & 82 & 84.5 \\
\hline 25 & 1 & 1.0 & 83 & 85.6 \\
\hline 50 & 2 & 2.1 & 85 & 87.6 \\
\hline 75 & 1 & 1.0 & 86 & 88.7 \\
\hline 100 & 11 & 11.3 & 97 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=382\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020E & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 66 & 68.0 & 66 & 68.0 \\
\hline 1 & 4 & 4.1 & 70 & 72.2 \\
\hline 2 & 2 & 2.1 & 72 & 74.2 \\
\hline 3 & 1 & 1.0 & 73 & 75.3 \\
\hline 5 & 3 & 3.1 & 76 & 78.4 \\
\hline 10 & 4 & 4.1 & 80 & 82.5 \\
\hline 15 & 2 & 2.1 & 82 & 84.5 \\
\hline 20 & 1 & 1.0 & 83 & 85.6 \\
\hline 25 & 1 & 1.0 & 84 & 86.6 \\
\hline 50 & 2 & 2.1 & 86 & 88.7 \\
\hline 75 & 1 & 1.0 & 87 & 89.7 \\
\hline 100 & 10 & 10.3 & 97 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=382\)
\begin{tabular}{|c|c|c|c|c|}
\hline LF020F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 39 & 39.8 & 39 & 39.8 \\
\hline 1 & 2 & 2.0 & 41 & 41.8 \\
\hline 2 & 15 & 15.3 & 56 & 57.1 \\
\hline 3 & 1 & 1.0 & 57 & 58.2 \\
\hline 5 & 5 & 5.1 & 62 & 63.3 \\
\hline 10 & 4 & 4.1 & 66 & 67.3 \\
\hline 15 & 2 & 2.0 & 68 & 69.4 \\
\hline 20 & 1 & 1.0 & 69 & 70.4 \\
\hline 25 & 2 & 2.0 & 71 & 72.4 \\
\hline 50 & 2 & 2.0 & 73 & 74.5 \\
\hline 60 & 1 & 1.0 & 74 & 75.5 \\
\hline 70 & 9 & 9.2 & 83 & 84.7 \\
\hline 75 & 2 & 2.0 & 85 & 86.7 \\
\hline 80 & 1 & 1.0 & 86 & 87.8 \\
\hline 100 & 12 & 12.2 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020G & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 25 & 25.8 & 25 & 25.8 \\
\hline 1 & 2 & 2.1 & 27 & 27.8 \\
\hline 2 & 1 & 1.0 & 28 & 28.9 \\
\hline 3 & 1 & 1.0 & 29 & 29.9 \\
\hline 5 & 1 & 1.0 & 30 & 30.9 \\
\hline 10 & 4 & 4.1 & 34 & 35.1 \\
\hline 25 & 1 & 1.0 & 35 & 36.1 \\
\hline 30 & 1 & 1.0 & 36 & 37.1 \\
\hline 50 & 4 & 4.1 & 40 & 41.2 \\
\hline 60 & 1 & 1.0 & 41 & 42.3 \\
\hline 70 & 2 & 2.1 & 43 & 44.3 \\
\hline 75 & 2 & 2.1 & 45 & 46.4 \\
\hline 80 & 3 & 3.1 & 48 & 49.5 \\
\hline 85 & 2 & 2.1 & 50 & 51.5 \\
\hline 90 & 13 & 13.4 & 63 & 64.9 \\
\hline 95 & 1 & 1.0 & 64 & 66.0 \\
\hline 99 & 7 & 7.2 & 71 & 73.2 \\
\hline 100 & 26 & 26.8 & 97 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=382\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 020 H & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 6 & 1 & 1.0 & 26 & 26.5 \\
\hline 10 & 3 & 3.1 & 29 & 29.6 \\
\hline 30 & 1 & 1.0 & 30 & 30.6 \\
\hline 40 & 1 & 1.0 & 31 & 31.6 \\
\hline 50 & 1 & 1.0 & 32 & 32.7 \\
\hline 60 & 2 & 2.0 & 34 & 34.7 \\
\hline 70 & 2 & 2.0 & 36 & 36.7 \\
\hline 75 & 2 & 2.0 & 38 & 38.8 \\
\hline 80 & 3 & 3.1 & 41 & 41.8 \\
\hline 85 & 2 & 2.0 & 43 & 43.9 \\
\hline 90 & 15 & 15.3 & 58 & 59.2 \\
\hline 95 & 1 & 1.0 & 59 & 60.2 \\
\hline 99 & 7 & 7.1 & 66 & 67.3 \\
\hline 100 & 32 & 32.7 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
\% of retro lights on - WTR WKDAY - 9AM \\
& & & \begin{tabular}{c} 
Cumulative
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
LF020I
\end{tabular} \\
Frequency & Percent & Frequency & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020J & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 10 & 1 & 1.0 & 26 & 26.5 \\
\hline 30 & 2 & 2.0 & 28 & 28.6 \\
\hline 40 & 1 & 1.0 & 29 & 29.6 \\
\hline 50 & 1 & 1.0 & 30 & 30.6 \\
\hline 60 & 2 & 2.0 & 32 & 32.7 \\
\hline 70 & 2 & 2.0 & 34 & 34.7 \\
\hline 75 & 2 & 2.0 & 36 & 36.7 \\
\hline 80 & 4 & 4.1 & 40 & 40.8 \\
\hline 85 & 2 & 2.0 & 42 & 42.9 \\
\hline 90 & 14 & 14.3 & 56 & 57.1 \\
\hline 95 & 1 & 1.0 & 57 & 58.2 \\
\hline 99 & 7 & 7.1 & 64 & 65.3 \\
\hline 100 & 34 & 34.7 & 98 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020K & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 10 & 1 & 1.0 & 26 & 26.5 \\
\hline 30 & 1 & 1.0 & 27 & 27.6 \\
\hline 40 & 1 & 1.0 & 28 & 28.6 \\
\hline 50 & 1 & 1.0 & 29 & 29.6 \\
\hline 60 & 2 & 2.0 & 31 & 31.6 \\
\hline 70 & 2 & 2.0 & 33 & 33.7 \\
\hline 75 & 2 & 2.0 & 35 & 35.7 \\
\hline 80 & 4 & 4.1 & 39 & 39.8 \\
\hline 85 & 2 & 2.0 & 41 & 41.8 \\
\hline 90 & 14 & 14.3 & 55 & 56.1 \\
\hline 95 & 1 & 1.0 & 56 & 57.1 \\
\hline 99 & 7 & 7.1 & 63 & 64.3 \\
\hline 100 & 35 & 35.7 & 98 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020L & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 10 & 1 & 1.0 & 26 & 26.5 \\
\hline 30 & 1 & 1.0 & 27 & 27.6 \\
\hline 40 & 1 & 1.0 & 28 & 28.6 \\
\hline 50 & 1 & 1.0 & 29 & 29.6 \\
\hline 60 & 2 & 2.0 & 31 & 31.6 \\
\hline 70 & 2 & 2.0 & 33 & 33.7 \\
\hline 75 & 2 & 2.0 & 35 & 35.7 \\
\hline 80 & 4 & 4.1 & 39 & 39.8 \\
\hline 85 & 2 & 2.0 & 41 & 41.8 \\
\hline 90 & 14 & 14.3 & 55 & 56.1 \\
\hline 95 & 1 & 1.0 & 56 & 57.1 \\
\hline 99 & 7 & 7.1 & 63 & 64.3 \\
\hline 100 & 35 & 35.7 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 10 & 1 & 1.0 & 26 & 26.5 \\
\hline 30 & 1 & 1.0 & 27 & 27.6 \\
\hline 40 & 1 & 1.0 & 28 & 28.6 \\
\hline 50 & 1 & 1.0 & 29 & 29.6 \\
\hline 60 & 2 & 2.0 & 31 & 31.6 \\
\hline 70 & 2 & 2.0 & 33 & 33.7 \\
\hline 75 & 2 & 2.0 & 35 & 35.7 \\
\hline 80 & 4 & 4.1 & 39 & 39.8 \\
\hline 85 & 2 & 2.0 & 41 & 41.8 \\
\hline 90 & 14 & 14.3 & 55 & 56.1 \\
\hline 95 & 1 & 1.0 & 56 & 57.1 \\
\hline 99 & 7 & 7.1 & 63 & 64.3 \\
\hline 100 & 35 & 35.7 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\% of retro lights on - WTR WKDAY - 2PM
\begin{tabular}{|c|c|c|c|c|}
\hline LF 0200 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 5 & 1 & 1.0 & 26 & 26.5 \\
\hline 30 & 1 & 1.0 & 27 & 27.6 \\
\hline 40 & 1 & 1.0 & 28 & 28.6 \\
\hline 50 & 1 & 1.0 & 29 & 29.6 \\
\hline 60 & 2 & 2.0 & 31 & 31.6 \\
\hline 70 & 2 & 2.0 & 33 & 33.7 \\
\hline 75 & 2 & 2.0 & 35 & 35.7 \\
\hline 80 & 4 & 4.1 & 39 & 39.8 \\
\hline 85 & 2 & 2.0 & 41 & 41.8 \\
\hline 90 & 14 & 14.3 & 55 & 56.1 \\
\hline 95 & 1 & 1.0 & 56 & 57.1 \\
\hline 99 & 7 & 7.1 & 63 & 64.3 \\
\hline 100 & 35 & 35.7 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020P & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 24 & 24.5 & 24 & 24.5 \\
\hline 1 & 1 & 1.0 & 25 & 25.5 \\
\hline 3 & 13 & 13.3 & 38 & 38.8 \\
\hline 5 & 4 & 4.1 & 42 & 42.9 \\
\hline 10 & 3 & 3.1 & 45 & 45.9 \\
\hline 30 & 1 & 1.0 & 46 & 46.9 \\
\hline 35 & 1 & 1.0 & 47 & 48.0 \\
\hline 40 & 1 & 1.0 & 48 & 49.0 \\
\hline 50 & 6 & 6.1 & 54 & 55.1 \\
\hline 60 & 2 & 2.0 & 56 & 57.1 \\
\hline 70 & 1 & 1.0 & 57 & 58.2 \\
\hline 75 & 2 & 2.0 & 59 & 60.2 \\
\hline 80 & 4 & 4.1 & 63 & 64.3 \\
\hline 99 & 7 & 7.1 & 70 & 71.4 \\
\hline 100 & 28 & 28.6 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020Q & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 10 & 10.1 & 10 & 10.1 \\
\hline 1 & 4 & 4.0 & 14 & 14.1 \\
\hline 3 & 13 & 13.1 & 27 & 27.3 \\
\hline 5 & 5 & 5.1 & 32 & 32.3 \\
\hline 10 & 5 & 5.1 & 37 & 37.4 \\
\hline 25 & 10 & 10.1 & 47 & 47.5 \\
\hline 30 & 2 & 2.0 & 49 & 49.5 \\
\hline 35 & 1 & 1.0 & 50 & 50.5 \\
\hline 40 & 1 & 1.0 & 51 & 51.5 \\
\hline 50 & 15 & 15.2 & 66 & 66.7 \\
\hline 60 & 2 & 2.0 & 68 & 68.7 \\
\hline 70 & 1 & 1.0 & 69 & 69.7 \\
\hline 75 & 3 & 3.0 & 72 & 72.7 \\
\hline 80 & 2 & 2.0 & 74 & 74.7 \\
\hline 100 & 25 & 25.3 & 99 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=380\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020R & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 8 & 8.1 & 8 & 8.1 \\
\hline 1 & 4 & 4.0 & 12 & 12.1 \\
\hline 2 & 2 & 2.0 & 14 & 14.1 \\
\hline 3 & 13 & 13.1 & 27 & 27.3 \\
\hline 5 & 4 & 4.0 & 31 & 31.3 \\
\hline 10 & 10 & 10.1 & 41 & 41.4 \\
\hline 25 & 9 & 9.1 & 50 & 50.5 \\
\hline 30 & 1 & 1.0 & 51 & 51.5 \\
\hline 35 & 1 & 1.0 & 52 & 52.5 \\
\hline 40 & 1 & 1.0 & 53 & 53.5 \\
\hline 50 & 11 & 11.1 & 64 & 64.6 \\
\hline 60 & 1 & 1.0 & 65 & 65.7 \\
\hline 70 & 1 & 1.0 & 66 & 66.7 \\
\hline 75 & 3 & 3.0 & 69 & 69.7 \\
\hline 80 & 1 & 1.0 & 70 & 70.7 \\
\hline 100 & 29 & 29.3 & 99 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=380\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020S & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 15 & 15.2 & 15 & 15.2 \\
\hline 1 & 4 & 4.0 & 19 & 19.2 \\
\hline 2 & 4 & 4.0 & 23 & 23.2 \\
\hline 3 & 13 & 13.1 & 36 & 36.4 \\
\hline 5 & 11 & 11.1 & 47 & 47.5 \\
\hline 10 & 8 & 8.1 & 55 & 55.6 \\
\hline 25 & 2 & 2.0 & 57 & 57.6 \\
\hline 30 & 1 & 1.0 & 58 & 58.6 \\
\hline 35 & 1 & 1.0 & 59 & 59.6 \\
\hline 40 & 1 & 1.0 & 60 & 60.6 \\
\hline 50 & 10 & 10.1 & 70 & 70.7 \\
\hline 60 & 1 & 1.0 & 71 & 71.7 \\
\hline 70 & 1 & 1.0 & 72 & 72.7 \\
\hline 75 & 1 & 1.0 & 73 & 73.7 \\
\hline 100 & 26 & 26.3 & 99 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 16 & 16.3 & 16 & 16.3 \\
\hline 1 & 4 & 4.1 & 20 & 20.4 \\
\hline 2 & 4 & 4.1 & 24 & 24.5 \\
\hline 3 & 14 & 14.3 & 38 & 38.8 \\
\hline 5 & 11 & 11.2 & 49 & 50.0 \\
\hline 10 & 7 & 7.1 & 56 & 57.1 \\
\hline 25 & 11 & 11.2 & 67 & 68.4 \\
\hline 30 & 1 & 1.0 & 68 & 69.4 \\
\hline 35 & 1 & 1.0 & 69 & 70.4 \\
\hline 40 & 1 & 1.0 & 70 & 71.4 \\
\hline 50 & 1 & 1.0 & 71 & 72.4 \\
\hline 60 & 1 & 1.0 & 72 & 73.5 \\
\hline 70 & 1 & 1.0 & 73 & 74.5 \\
\hline 75 & 1 & 1.0 & 74 & 75.5 \\
\hline 80 & 1 & 1.0 & 75 & 76.5 \\
\hline 100 & 23 & 23.5 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline LF020V & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 27 & 27.6 & 27 & 27.6 \\
\hline 1 & 5 & 5.1 & 32 & 32.7 \\
\hline 2 & 4 & 4.1 & 36 & 36.7 \\
\hline 3 & 14 & 14.3 & 50 & 51.0 \\
\hline 5 & 4 & 4.1 & 54 & 55.1 \\
\hline 10 & 8 & 8.2 & 62 & 63.3 \\
\hline 25 & 11 & 11.2 & 73 & 74.5 \\
\hline 30 & 1 & 1.0 & 74 & 75.5 \\
\hline 35 & 1 & 1.0 & 75 & 76.5 \\
\hline 40 & 1 & 1.0 & 76 & 77.6 \\
\hline 50 & 1 & 1.0 & 77 & 78.6 \\
\hline 70 & 1 & 1.0 & 78 & 79.6 \\
\hline 75 & 1 & 1.0 & 79 & 80.6 \\
\hline 100 & 19 & 19.4 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020W & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 31 & 31.6 & 31 & 31.6 \\
\hline 1 & 4 & 4.1 & 35 & 35.7 \\
\hline 2 & 4 & 4.1 & 39 & 39.8 \\
\hline 3 & 14 & 14.3 & 53 & 54.1 \\
\hline 5 & 5 & 5.1 & 58 & 59.2 \\
\hline 10 & 9 & 9.2 & 67 & 68.4 \\
\hline 20 & 1 & 1.0 & 68 & 69.4 \\
\hline 25 & 10 & 10.2 & 78 & 79.6 \\
\hline 35 & 1 & 1.0 & 79 & 80.6 \\
\hline 50 & 1 & 1.0 & 80 & 81.6 \\
\hline 70 & 1 & 1.0 & 81 & 82.7 \\
\hline 75 & 1 & 1.0 & 82 & 83.7 \\
\hline 100 & 16 & 16.3 & 98 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=381\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF020X & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 64 & 66.0 & 64 & 66.0 \\
\hline 1 & 4 & 4.1 & 68 & 70.1 \\
\hline 2 & 2 & 2.1 & 70 & 72.2 \\
\hline 3 & 1 & 1.0 & 71 & 73.2 \\
\hline 5 & 3 & 3.1 & 74 & 76.3 \\
\hline 10 & 3 & 3.1 & 77 & 79.4 \\
\hline 15 & 2 & 2.1 & 79 & 81.4 \\
\hline 25 & 1 & 1.0 & 80 & 82.5 \\
\hline 50 & 1 & 1.0 & 81 & 83.5 \\
\hline 75 & 1 & 1.0 & 82 & 84.5 \\
\hline 100 & 15 & 15.5 & 97 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=382\)} \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& \% of light equip changed through prog \\
& & & \\
IL001 & Frequency & Percent & Frequency & Cumulative \\
- Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL005 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 188 & 53.4 & 188 & 53.4 \\
\hline 1 & 11 & 3.1 & 199 & 56.5 \\
\hline 2 & 15 & 4.3 & 214 & 60.8 \\
\hline 3 & 7 & 2.0 & 221 & 62.8 \\
\hline 4 & 2 & 0.6 & 223 & 63.4 \\
\hline 5 & 22 & 6.3 & 245 & 69.6 \\
\hline 8 & 3 & 0.9 & 248 & 70.5 \\
\hline 9 & 1 & 0.3 & 249 & 70.7 \\
\hline 10 & 48 & 13.6 & 297 & 84.4 \\
\hline 15 & 4 & 1.1 & 301 & 85.5 \\
\hline 20 & 4 & 1.1 & 305 & 86.6 \\
\hline 25 & 3 & 0.9 & 308 & 87.5 \\
\hline 30 & 18 & 5.1 & 326 & 92.6 \\
\hline 33 & 2 & 0.6 & 328 & 93.2 \\
\hline 35 & 1 & 0.3 & 329 & 93.5 \\
\hline 40 & 2 & 0.6 & 331 & 94.0 \\
\hline 45 & 4 & 1.1 & 335 & 95.2 \\
\hline 50 & 10 & 2.8 & 345 & 98.0 \\
\hline 80 & 1 & 0.3 & 346 & 98.3 \\
\hline 90 & 1 & 0.3 & 347 & 98.6 \\
\hline 100 & 5 & 1.4 & 352 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 127} \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& Average age replaced & fixtures & \\
SR010 & Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{rrrr} 
Culative \\
Percent
\end{tabular}
\begin{tabular}{lccc}
\(c\) & Changed any indoor lighting? \\
IL010 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL020 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline AUG1992 & 1 & 5.9 & 1 & 5.9 \\
\hline JUN1993 & 2 & 11.8 & 3 & 17.6 \\
\hline AUG1993 & 1 & 5.9 & 4 & 23.5 \\
\hline OCT1993 & 1 & 5.9 & 5 & 29.4 \\
\hline DEC1993 & 1 & 5.9 & 6 & 35.3 \\
\hline FEB1994 & 2 & 11.8 & 8 & 47.1 \\
\hline APR1994 & 3 & 17.6 & 11 & 64.7 \\
\hline JUL1994 & 1 & 5.9 & 12 & 70.6 \\
\hline SEP1994 & 1 & 5.9 & 13 & 76.5 \\
\hline NOV1994 & 2 & 11.8 & 15 & 88.2 \\
\hline JAN1995 & 1 & 5.9 & 16 & 94.1 \\
\hline MAR1995 & 1 & 5.9 & 17 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=462\)
\begin{tabular}{ccccc} 
year indoor light change \\
IL021 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 1992 & 4 & 44.4 & 4 & 44.4 \\
1993 & 2 & 22.2 & 6 & 66.7 \\
1994 & 2 & 22.2 & 8 & 88.9 \\
1995 & 1 & 11.1 & 9 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL025 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline JAN1994 & 1 & 100.0 & 1 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=478\)} \\
\hline \multicolumn{5}{|c|}{year indoor light change-2} \\
\hline IL026 & Frequency & Percent & \begin{tabular}{l}
Cumulative \\
\(t\) Frequency
\end{tabular} & Cumulative Percent \\
\hline 1994 & 2 & 100.0 & 2 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL040} & \multicolumn{3}{|l|}{Added or removed/4' T-8} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline No change & 11 & 52.4 & 11 & 52.4 \\
\hline Added & 9 & 42.9 & 20 & 95.2 \\
\hline Removed & 1 & 4.8 & 21 & 100.0 \\
\hline & Frequen & Missing & \(=458\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL041} & \multicolumn{3}{|l|}{Added or removed/8' T-8} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline No change & 15 & 83.3 & 15 & 83.3 \\
\hline Added & 2 & 11.1 & 17 & 94.4 \\
\hline Removed & 1 & 5.6 & 18 & 100.0 \\
\hline & Frequen & y Missing & \(=461\) & \\
\hline
\end{tabular}
\begin{tabular}{lcccr} 
& Added or removed/4' & ES Fluor \\
& & & Cumulative & Cumulative \\
IL042 & Frequency & Percent & Frequency & Percent \\
No change & 16 & 94.1 & 16 & 94.1 \\
Added & 1 & 5.9 & 17 & 100.0
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL04 4} & \multicolumn{3}{|l|}{Added or removed/4' T-12} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline \multirow[t]{3}{*}{No change} & 15 & 100.0 & 15 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=464\)} & \\
\hline & \multicolumn{3}{|l|}{Added or removed/8' T-12} & \\
\hline IL04 5 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{No change Added} & 14 & 93.3 & 14 & 93.3 \\
\hline & 1 & 6.7 & 15 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=464\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline IL048 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 16 & 100.0 & 16 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=463\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccr} 
& Added or removed/Elec Ballasts \\
IL049 & Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{l} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ILO 40 N} & \multicolumn{3}{|l|}{Number changed/4' T-8} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 1 & 1 & 11.1 & 1 & 11.1 \\
\hline 4 & 1 & 11.1 & 2 & 22.2 \\
\hline 6 & 1 & 11.1 & 3 & 33.3 \\
\hline 7 & 1 & 11.1 & 4 & 44.4 \\
\hline 8 & 1 & 11.1 & 5 & 55.6 \\
\hline 9 & 1 & 11.1 & 6 & 66.7 \\
\hline 20 & 1 & 11.1 & 7 & 77.8 \\
\hline 21 & 1 & 11.1 & 8 & 88.9 \\
\hline 40 & 1 & 11.1 & 9 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=470\)} \\
\hline \multicolumn{5}{|c|}{Number changed/8' T-8} \\
\hline IL041N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{4} & 1 & 100.0 & 1 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=478\)} & \\
\hline \multicolumn{5}{|c|}{Number changed/4' ES Fluor} \\
\hline IL0 42N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL0 43N} & \multicolumn{3}{|l|}{Number changed/8' ES Fluor} & \multirow[b]{2}{*}{Cumulative Percent} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline \multirow[t]{3}{*}{8} & 1 & 100.0 & 1 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=478\)} & \\
\hline & Number & changed/ & T-12 & \\
\hline ILO 4 4N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Number changed/8' T-12} \\
\hline IL0 45N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{10} & & 100.0 & 1 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=478\)} & \\
\hline \multicolumn{5}{|c|}{Number changed/Incandescent} \\
\hline ILO 4 6N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 4 & 1 & 25.0 & 1 & 25.0 \\
\hline 12 & 1 & 25.0 & 2 & 50.0 \\
\hline 50 & 1 & 25.0 & 3 & 75.0 \\
\hline \multirow[t]{2}{*}{82} & 1 & 25.0 & 4 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=475\)} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL047N} & \multicolumn{3}{|l|}{Number changed/Compact Fluor} & \multirow[b]{2}{*}{Cumulative Percent} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 2 & 1 & 20.0 & 1 & 20.0 \\
\hline 4 & 1 & 20.0 & 2 & 40.0 \\
\hline 12 & 1 & 20.0 & 3 & 60.0 \\
\hline 20 & 1 & 20.0 & 4 & 80.0 \\
\hline 50 & 1 & 20.0 & 5 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=474\)} \\
\hline \multicolumn{5}{|c|}{Number changed/High pres sodium} \\
\hline IL048N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0
15 & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
50.0
\] & 1 & 50.0
100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=477\)} \\
\hline \multicolumn{5}{|c|}{Number changed/Elec Ballasts} \\
\hline IL049N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 13 & 1 & 25.0 & 1 & 25.0 \\
\hline 15 & 1 & 25.0 & 2 & 50.0 \\
\hline 20 & 2 & 50.0 & 4 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=475\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL050 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No change & 15 & 93.8 & 15 & 93.8 \\
\hline Removed & 1 & 6.3 & 16 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=463\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccr} 
& Added or removed/Metal Halide \\
IL051 & Frequency & Percent & Cumulative & Cumulative \\
Frequency & Percent \\
No change & 13 & 86.7 & 13 & 86.7 \\
Added & 2 & 13.3 & 15 & 100.0
\end{tabular}
\begin{tabular}{lcccr} 
& Added or removed/Mercury Vapor \\
IL052 & Frequency & Percent & Cumulative & Cumulative \\
Frequency & Percent \\
No change & 14 & 93.3 & 14 & 93.3 \\
Added & 1 & 6.7 & 15 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL053 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 13 & 86.7 & 13 & 86.7 \\
\hline Added & 2 & 13.3 & 15 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=464\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline IL056 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 15 & 100.0 & 15 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 464} \\
\hline
\end{tabular}
\begin{tabular}{lccc}
\multicolumn{3}{c}{ Added or removed/Other } \\
IL057 & Frequency & Percent & Cumulative \\
Frequency & Cumulative \\
Percent
\end{tabular}

\begin{tabular}{cccc} 
Number changed/Metal Halide \\
IL051N & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL052N} & \multicolumn{4}{|l|}{Number changed/Mercury Vapor} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Number changed/Quartz} \\
\hline IL053N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 40 & 1 & 100.0 & 1 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=478\)} \\
\hline
\end{tabular}
Number changed/Reflectors
IL054N Frequency Percent Frequency Pralative Percent Frequency Missing \(=479\)
\begin{tabular}{|c|c|c|c|c|}
\hline IL055N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 65 & 1 & 100.0 & 1 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=478\)} \\
\hline
\end{tabular}
Number changed/Watt Saver-Power Choke
IL056N Frequency Percent Frequency Pulative Pumulative
Frequency Missing \(=479\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{OBS IL058} \\
\hline & \(\begin{array}{ll}1 & \mathrm{R} \\ 2 & \mathrm{~S} \\ 3 & \mathrm{P} \\ 4 & 2\end{array}\) & \begin{tabular}{l}
REPLACED L \\
SAFETY LIG \\
PL BULBS \\
20 WATT FL
\end{tabular} & \begin{tabular}{l}
COVERS \\
T \\
R/T40
\end{tabular} & \\
\hline \multicolumn{5}{|c|}{Problems with ballasts after retro?} \\
\hline DS030 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
\(y\) Percent
\end{tabular} \\
\hline No & 153 & \[
78.5
\] & \[
\begin{aligned}
& 153 \\
& 195
\end{aligned}
\] & \[
\begin{array}{r}
78.5
\end{array}
\] \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=284\)} \\
\hline \multirow[t]{2}{*}{DS045} & \multicolumn{4}{|l|}{Frequency Percent Cumulative Cumulative} \\
\hline & \multicolumn{4}{|l|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Any instld equip been removed} \\
\hline LP 010 & Frequency & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cumulative \\
Percent Frequency
\end{tabular}} & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline \multicolumn{2}{|l|}{No 439} & 98.7 & 439 & 98.7 \\
\hline \multirow[t]{2}{*}{Yes} & 6 & 1.3 & 445 & 100.0 \\
\hline & \multicolumn{4}{|c|}{Frequency Missing = 34} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
& month/year of new equip removed
\end{tabular}

Frequency Missing \(=475\)
\begin{tabular}{ccccc} 
year of new equip removed \\
LP021 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 1995 & 2 & 100.0 & 2 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LP 025 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing = 479
year of new equip removed/2
LP026 Frequency Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} Cumulative
Percent
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Removed/4' T-8} \\
\hline LP030 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 4 & 2 & 100.0 & 2 & 100.0 \\
\hline
\end{tabular}

Removed/8' T-8
\begin{tabular}{ccccc} 
LP031 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 1 & 100.0 & 1 & 100.0
\end{tabular}
\begin{tabular}{cccc}
\(c\) & Removed/4' ES Fluor \\
LP032 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/8' ES Fluor \\
LP033 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 1 & 100.0 & 1
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/4' & \(\mathrm{T}-12\) \\
LP034 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 1 & 100.0 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Removed/8' T -12} \\
\hline LP 035 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 1 & 100.0 & 1 & 100.0 \\
\hline & Frequen & Missing & \(=478\) & \\
\hline
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/Incandescent \\
LP036 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
0 & 1 & 100.0 & 1
\end{tabular}

\begin{tabular}{cccc}
\(c\) & Removed/High pres sodium \\
LP038 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/Metal Halide \\
LP039 Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LP040} & \multicolumn{3}{|c|}{Removed/Mercury Vpr} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 0 & 3 & 100.0 & 3 & 100.0 \\
\hline & Frequen & Missing & \(=476\) & \\
\hline
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/Quartz \\
LP041 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 3 & 100.0 & 3
\end{tabular}

\begin{tabular}{cccc}
\(c\) \\
Removed/Elec Ballasts \\
LP043 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 2 & 100.0 & 2
\end{tabular}
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Removed/Magnetic Ballasts } \\
LP044 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative & Percent
\end{tabular}

Frequency Missing \(=476\)
\begin{tabular}{|c|c|c|c|c|}
\hline LP 045 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 3 & 100.0 & 3 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 476} \\
\hline
\end{tabular}

\begin{tabular}{ccccc} 
Why removed/poor light quality \\
LP050 & Frequency & Percent & Cumulative & Frequency
\end{tabular}\(\quad\) Percent
\begin{tabular}{ccccc} 
Why removed/not enough light \\
LP051 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 3 & 75.0 & 3 & 75.0 \\
1 & 1 & 25.0 & 4 & 100.0 \\
& Frequency Missing \(=475\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LP 052 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 3 & 100.0 & 3 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=476\)} \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Why removed/harmonics problems \\
LP053 Frequency & Percent & Cumulative & Frequency
\end{tabular}\(\quad\) Percent
\begin{tabular}{cccc} 
Why removed/ballasts failed \\
LP054 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
0 & 3 & 100.0 & 3
\end{tabular}

Why removed/other
\begin{tabular}{ccccc} 
LP 055 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
1 & 5 & 100.0 & 5 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & OBS L & LP056 & & \\
\hline & 1 M & MOVING WALLS & DURING REMO & \\
\hline & 2 P & PERSONNEL MO & VED, LAYOUT & I \\
\hline & 3 U & UPDATE EQUIP & MENT & \\
\hline & 4 R & REMODEL & & \\
\hline & 5 R & REMODEL & & \\
\hline & & Why removed/ & refused & \\
\hline LP 057 & Frequency & \(y\) Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 3 & 75.0 & 3 & 75.0 \\
\hline 1 & 1 & 25.0 & 4 & 100.0 \\
\hline & & equency Miss & ing \(=475\) & \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Why removed/dont know \\
LP058 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Remodeled} \\
\hline LP 059 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 1 & 4 & 100.0 & 4 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=475\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
Replace removed retrofit? \\
LP060 & Frequency & Percent & Cumulative & Frequency
\end{tabular}\(\quad\) Percent

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LP 071} & \multicolumn{3}{|c|}{Replcd w/8' T-8} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/4' ES Fluor} \\
\hline LP 072 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/8' ES Fluor} \\
\hline LP073 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/4' T-12} \\
\hline LP 074 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/8' T-12} \\
\hline LP 075 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LP 076} & \multicolumn{3}{|l|}{Replcd w/Incandescent} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/Compact Fluor} \\
\hline LP 077 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 14 & 2 & 100.0 & 2 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=477\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/High pres sodium} \\
\hline LP 078 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/Metal Halide} \\
\hline LP 079 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=479\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline LP 084 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{3}{*}{0} & 2 & 100.0 & 2 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=477\)} & \\
\hline & \multicolumn{3}{|l|}{Replcd w/LED Exit Lights} & \\
\hline LP 085 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{0} & 2 & 100.0 & 2 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=477\)} & \\
\hline & \multicolumn{3}{|l|}{Replcd w/Watt Saver-Power Choke} & \\
\hline LP086 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{0} & 2 & 100.0 & 2 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing = 477} & \\
\hline
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Replcd w/Other \\
LP087 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
0 & 2 & 66.7 & 2
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & OL020 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 285 & 77.0 & 285 & 77.0 \\
\hline Yes & & 85 & 23.0 & 370 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=109\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OL030 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline JUL1992 & 1 & 1.8 & 1 & 1.8 \\
\hline JAN1993 & 2 & 3.6 & 3 & 5.4 \\
\hline MAR1993 & 1 & 1.8 & 4 & 7.1 \\
\hline APR1993 & 1 & 1.8 & 5 & 8.9 \\
\hline AUG1993 & 3 & 5.4 & 8 & 14.3 \\
\hline SEP1993 & 1 & 1.8 & 9 & 16.1 \\
\hline NOV1993 & 1 & 1.8 & 10 & 17.9 \\
\hline DEC1993 & 2 & 3.6 & 12 & 21.4 \\
\hline JAN1994 & 1 & 1.8 & 13 & 23.2 \\
\hline FEB1994 & 4 & 7.1 & 17 & 30.4 \\
\hline MAR1994 & 3 & 5.4 & 20 & 35.7 \\
\hline APR1994 & 1 & 1.8 & 21 & 37.5 \\
\hline MAY1994 & 2 & 3.6 & 23 & 41.1 \\
\hline JUN1994 & 5 & 8.9 & 28 & 50.0 \\
\hline JUL1994 & 4 & 7.1 & 32 & 57.1 \\
\hline AUG1994 & 3 & 5.4 & 35 & 62.5 \\
\hline SEP1994 & 8 & 14.3 & 43 & 76.8 \\
\hline OCT1994 & 1 & 1.8 & 44 & 78.6 \\
\hline NOV1994 & 2 & 3.6 & 46 & 82.1 \\
\hline DEC1994 & 1 & 1.8 & 47 & 83.9 \\
\hline JAN1995 & 3 & 5.4 & 50 & 89.3 \\
\hline FEB1995 & 2 & 3.6 & 52 & 92.9 \\
\hline MAR1995 & 1 & 1.8 & 53 & 94.6 \\
\hline APR1995 & 1 & 1.8 & 54 & 96.4 \\
\hline MAY1995 & 2 & 3.6 & 56 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=423\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
Year change outdoor lights \\
OL031 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Add/replace/remove outdoor lights} \\
\hline OLO 40 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline Added & 21 & 24.7 & 21 & 24.7 \\
\hline Replaced & 49 & 57.6 & 70 & 82.4 \\
\hline Add and Replace & 13 & 15.3 & 83 & 97.6 \\
\hline Removed & 2 & 2.4 & 85 & 100.0 \\
\hline & Frequency & Missing & 394 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CE010} & \multicolumn{3}{|c|}{Cooling type} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline No AC & 88 & 20.8 & 88 & 20.8 \\
\hline Centrl Plant & 93 & 21.9 & 181 & 42.7 \\
\hline Sml Pack Sys & 162 & 38.2 & 343 & 80.9 \\
\hline Wall/Wndo Unit & 18 & 4.2 & 361 & 85.1 \\
\hline Heat Pump & 40 & 9.4 & 401 & 94.6 \\
\hline Other & 8 & 1.9 & 409 & 96.5 \\
\hline Evap Cooler & 5 & 1.2 & 414 & 97.6 \\
\hline Swamp Cooler & 10 & 2.4 & 424 & 100.0 \\
\hline & Frequenc & Missing & 55 & \\
\hline
\end{tabular}
\begin{tabular}{rl} 
OBS & CEOII \\
1 & LATENT ICE \\
2 & FANS \\
3 & S STAIR COOLING SYSTEM \\
4 & SWAMP COOLERS \\
5 & OLDER UNITS \\
6 & ON EUNIT HAS EVAPORATIVE COOLE \\
7 & ON EUNIT HAS EVAPORATIVE COOLE \\
8 & SWAMP COOLERS \\
9 & SWAMP COOLER \\
10 & "TRAIN" ON TOP OF BUILDING \\
11 & SWAMP COOLER \\
12 & SWAMP COOLER \\
13 & ELECTRIC ROOF AIR CONDITIONER \\
14 & SWAMP COOLER \\
15 & REFERGERATION \\
16 & SWAMP COOLER \\
17 & EVAPORATIVE COOLERS \\
18 & SWAMP COOLERS \\
19 & AIR HANLDERS \& RECIPROCATING U \\
20 & DUAL PACKS \\
21 & SEVERAL MULTI TON UNITS \\
22 & EVAPORATIVE \\
23 & RELOCATABLES HAVE HEAT PUMPS \\
24 & RELOCATABLES HAVE HEAT PUMPS \\
25 & RELOCATABLES HAVE HEAT PUMPS \\
26 & RELOCATABLES HAVE HEAT PUMPS \\
27 & RELOCATABLES HAVE HEAT PUMPS \\
28 & RELOCATABLES HAVE HEAT PUMPS \\
29 & RELOCATABLES HAVE HEAT PUMPS \\
30 & RELOCATABLES HAVE HEAT PUMPS \\
31 & RELOCATABLES HAVE HEAT PUMPS \\
32 & RELOCATABLES HAVE HEAT PUMPS \\
33 & RELOCATABLES HAVE HEAT PUMPS \\
34 & RELOCATABLES HAVE HEAT PUMPS \\
35 & RELOCATABLES HAVE HEAT PUMPS \\
36 & EVAPORATIVE COOLER \\
37 & MULTY PACKAGE \\
38 & 5-TON UNITS \\
39 & ROOF TOP CON.
\end{tabular}
\begin{tabular}{lcccc} 
& Cooling primary fuel \\
& & & \\
CE015 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
Elec & 306 & 89.5 & 306 & 89.5 \\
Natural Gas & 27 & 7.9 & 333 & 97.4 \\
Other & 5 & 1.5 & 338 & 98.8 \\
Gas and Electric & 4 & 1.2 & 342 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OBS & \multicolumn{4}{|l|}{CE016} \\
\hline & 1 & \multicolumn{4}{|l|}{PROPANE} \\
\hline & 2 & \multicolumn{4}{|l|}{GAS \& ELECTRIC} \\
\hline & 3 & \multicolumn{4}{|l|}{MIXTURE OF GAS AND ELECTRICITY} \\
\hline & 4 & \multicolumn{4}{|l|}{FREON} \\
\hline & 5 & \multicolumn{4}{|l|}{CEILING FANS} \\
\hline & 6 & \multicolumn{4}{|l|}{BOTH GAS \& ELECTRIC} \\
\hline & 7 & \multicolumn{4}{|l|}{FUEL OIL} \\
\hline & 8 & \multicolumn{4}{|l|}{WATER} \\
\hline & 9 & \multicolumn{4}{|l|}{COMBINATION GAS \& ELECTRIC} \\
\hline \multicolumn{6}{|c|}{System include economizer?} \\
\hline & CE030 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 150 & 53.6 & 150 & 53.6 \\
\hline Yes & & 130 & 46.4 & 280 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 199} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CE050 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 33 & 9.5 & 33 & 9.5 \\
\hline 1-19 & 33 & 9.5 & 66 & 19.0 \\
\hline 20-39 & 26 & 7.5 & 92 & 26.5 \\
\hline 40-59 & 16 & 4.6 & 108 & 31.1 \\
\hline 60-79 & 26 & 7.5 & 134 & 38.6 \\
\hline 80-99 & 49 & 14.1 & 183 & 52.7 \\
\hline 100 & 164 & 47.3 & 347 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=132\)} \\
\hline
\end{tabular}


\begin{tabular}{lcccr}
\multicolumn{4}{c}{ Cooling operated/Feb } \\
& & & Cumulative & Cumulative \\
CE061 & Frequency & Percent & Frequency & Percent \\
No & 244 & 99.2 & 244 & 99.2 \\
Yes & 2 & 0.8 & 246 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Cooling operated/Mar} \\
\hline & CE062 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 233 & 94.7 & 233 & 94.7 \\
\hline Yes & & 13 & 5.3 & 246 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=233\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/Apr} & \\
\hline & & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 170 & 71.7 & 170 & 71.7 \\
\hline Yes & & 67 & 28.3 & 237 & 100.0 \\
\hline & & Frequen & M Missing & \(=242\) & \\
\hline
\end{tabular}
\begin{tabular}{lccc}
\multicolumn{4}{c}{ Cooling operated/May } \\
CE064 & Frequency & Percent & Cumulative \\
Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{lcccc}
\(c\) & Cooling operated/Jun \\
& & \\
CE065 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{lccc}
\multicolumn{4}{c}{ Cooling operated/Jul } \\
CE066 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Cooling operated/Aug} \\
\hline & CE067 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 13 & 5.2 & 13 & 5.2 \\
\hline Yes & & 237 & 94.8 & 250 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=229\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/Oct} & \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 129 & 53.1 & 129 & 53.1 \\
\hline Yes & & 114 & 46.9 & 243 & 100.0 \\
\hline & & Frequen & y Missing & \(=236\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/Nov} & \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 219 & 90.9 & 219 & 90.9 \\
\hline Yes & & 22 & 9.1 & 241 & 100.0 \\
\hline & & Freque & Missin & \(=238\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Cool & operat & /Dec & \\
\hline & CE071 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 236 & 98.7 & 236 & 98.7 \\
\hline Yes & & 3 & 1.3 & 239 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=240\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & CE072 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 225 & 100.0 & 225 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=254\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/DK} & \\
\hline & & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 215 & 95.1 & 215 & 95.1 \\
\hline Yes & & 11 & 4.9 & 226 & 100.0 \\
\hline & & Frequen & Missin & \(=253\) & \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
\multicolumn{4}{c}{ Added/replaced/removed cooling } \\
& CE080 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline CE110 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Elec & 41 & 100.0 & 41 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 438} \\
\hline \multicolumn{5}{|c|}{OBS CE111} \\
\hline \multicolumn{5}{|c|}{1 WATER} \\
\hline \multicolumn{5}{|c|}{Cooling addition fuel type} \\
\hline CE120 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Elec & 28 & 84.8 & 28 & 84.8 \\
\hline Natural Gas & 5 & 15.2 & 33 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=446\)} \\
\hline
\end{tabular}

Type of main heating
\begin{tabular}{lrrrr} 
& HE015 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
```

 OBS HE016
 DUAL PAK
 DONT KNOW
 PACKAGEDED SYUSTEM
 HEAT PUMP
 PACKAGED UNITS
 EACH TENANT HAS THEIR OWN
 ROOF UNITS
 PACKAGED UNITS
 FORCED AIR
 DONT
 PACKAGED SYSTEM
 COMBINATION HEATING AND AIR
 HEAT WITH COOLING PACKAGE
 PACKAGED UNITS
 PERMANENT CEILING HEATER
 PORTABLE HEATERS
 HEAT PUMP
 5 GAS FURNACES
 GAS FORCED AIR W/ ELEC. BLOWERS
 RADIANT HEAT IN FLOORING
 HEATER/AIR CONDITIONER ON THE ROOF
 PACKAGED SYSTEMS
 PACKAGED SYSTEMS
 MOUNTED, DIRECT DISCHARGE
 HEAT-PUMP
 PART OF COOLING PACKAGE
 DK
 DUAL PACKS & EVAP COOLERS
 PACKAGED SYSTEMS
 PACKAGED UNITS
 COMBINED
 4 AND 3
 GAS PACK
 IND. HEAT PUMPS
 GAS PACK.
 DUEL HEATING COOLING UNITS
 50/50 GAS BOILER/GAS FURNACE
 RECLAIMED HEAT
 RECLAIMED HEAT
 RECLAIMED HEAT
 RECLAIMED HEAT
 RECLAIMED HEAT
 | OBS | HE016 | | | |
| :---: | :---: | :---: | :---: | :---: |
| 54 | RECLAIMED HEAT | | | |
| 55 R | RECLAIMED HEAT | | | |
| 56 | HVC UNITS | | | |
| 57 | PORTABLE UNITS | | | |
| 58 | CENTRAL GAS SYSTEM | | | |
| 59 S | SMALL SYSTEM | | | |
| 60 | STEAM BOILER IN THE FLOOR | | | |
| 61 | INDIVD HEATER, NOT CENTRALIZED HEAT SYS | | | |
| 62 H | HIGH PRESSURE STEAM | | | |
| 63 M | MANY 15 TON HEATERS ON ROOF | | | |
| 64 Z | ZZZ | | | |
| 65 | INDIVIDUAL ROOM UNITS | | | |
| 66 | HOT AIR GAS INDEPENDENT UNITS | | | |
| 67 F | FORCED AIR | | | |
| 68 E | ELECTRIC AREA HEATERS | | | |
| 69 c | COMBO UNIT GAS \& ELECTRIC | | | |
| 70 | BUILT INTO THE SAME PACKAGED UNIT (GAS) | | | |
| 71 | COMBINATION OF GAS HEAT PUMP | | | |
| 72 | DON'T KNOW | | | |
| | Primary fuel to heat facility | | | |
| HE020 | 0 Frequency | Percent | Cumulative Frequency | Cumulative
 Percent |
| Natural Gas | 286 | 68.4 | 286 | 68.4 |
| Propane/Bottld g | $9 \quad 17$ | 4.1 | 303 | 72.5 |
| Oil | 4 | 1.0 | 307 | 73.4 |
| Elec | 75 | 17.9 | 382 | 91.4 |
| Other | 6 | 1.4 | 388 | 92.8 |
| Reclaimed Heat | 18 | 4.3 | 406 | 97.1 |
| None | 11 | 2.6 | 417 | 99.8 |
| Combination | 1 | 0.2 | 418 | 100.0 |

OBS	HE021
1	GAS/ELECRTIC
2	NONE
3	NONE
4	WOOD
5	NONE
6	NONE
7	HEAT COMES FROM DRY CLEANING
8	NONE
9	NONE
10	NONE
11	NONE
12	NONE
13	NONE
14	NONE; NO HEATING.
15	DIESEL
16	PORTABLE ELECTRIC HEATER
17	NONE
18	RECLAIMED HEAT BLOWN BY FANS
19	RECLAIMED HEAT BLOWN BY FANS
20	RECLAIMED HEAT BLOWN BY FANS
21	RECLAIMED HEAT BLOWN BY FANS
22	RECLAIMED HEAT BLOWN BY FANS
23	RECLAIMED HEAT BLOWN BY FANS
24	RECLAIMED HEAT BLOWN BY FANS
25	RECLAIMED HEAT BLOWN BY FANS
26	RECLAIMED HEAT BLOWN BY FANS
27	RECLAIMED HEAT BLOWN BY FANS
28	RECLAIMED HEAT BLOWN BY FANS
29	RECLAIMED HEAT BLOWN BY FANS
30	RECLAIMED HEAT BLOWN BY FANS
31	RECLAIMED HEAT BLOWN BY FANS
32	RECLAIMED HEAT BLOWN BY FANS
33	RECLAIMED HEAT BLOWN BY FANS
34	RECLAIMED HEAT BLOWN BY FANS
35	RECLAIMED HEAT BLOWN BY FANS
36	PELLET
37	NONE
38	DO NOT HAVE

\% of facility heated - WTR WKDAY - 8AM

	HE059	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		288	76.4	288	76.4
Yes		89	23.6	377	100.0
Frequency Missing $=102$					

Heating operated/Jan				
			Cumulative	Cumulative
HE060	Frequency	Percent	Frequency	Percent
No	38	10.9	38	10.9
Yes	310	89.1	348	100.0

Heating operated/Feb				
HE061	Frequency	Percent	Frequency Frequive	Cumulative Percent
No	43	12.4	43	12.4
Yes	304	87.6	347	100.0

Heating operated/Apr					
HE063	Frequency	Percent	Cumulative Frequency		Cumulative
:---:					
Percent					

Frequency Missing $=139$

Heating operated/May					
		Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		246	72.8	246	72.8
Yes		92	27.2	338	100.0
		Frequen	Missing	$=141$	

Heating operated/Jun				
HE065	Frequency	Percent	Frequency	Cumulative
Percent				

Heating operated/Jul				
			Cumulative	Cumulative
HE066	Frequency	Percent	Frequency	Percent

	HE0 67	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		326	97.3	326	97.3
Yes		9	2.7	335	100.0

Frequency Missing $=144$

Heating operated/Sep					
		Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		309	92.0	309	92.0
Yes		27	8.0	336	100.0
		Frequen	M Missing	$=143$	

Heating operated/Nov				
HE070	Frequency	Percent	Frequency	Cumulative
Percent				

Heating operated/Dec				
			Cumulative	Cumulative
HE071	Frequency	Percent	Frequency	Percent
No	43	12.4	43	12.4
Yes	303	87.6	346	100.0

	HE072	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		284	94.7	284	94.7
Yes		16	5.3	300	100.0
Frequency Missing $=179$					

	HE073	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		280	90.9	280	90.9
Yes		28	9.1	308	100.0
Frequency Missing $=171$					

HEO90	Month/Year changed heating			Cumulative Percent
	Frequency	Percent	Cumulative Frequency	
FEB1992	1	4.0	1	4.0
JUN1992	1	4.0	2	8.0
JUL1992	1	4.0	3	12.0
DEC1992	1	4.0	4	16.0
MAY1993	1	4.0	5	20.0
JUN1993	1	4.0	6	24.0
NOV1993	1	4.0	7	28.0
DEC1993	1	4.0	8	32.0
APR1994	1	4.0	9	36.0
JUN1994	2	8.0	11	44.0
JUL1994	8	32.0	19	76.0
AUG1994	1	4.0	20	80.0
OCT1994	1	4.0	21	84.0
JAN1995	1	4.0	22	88.0
MAR1995	1	4.0	23	92.0
APR1995	2	8.0	25	100.0
Frequency Missing $=454$				
Year changed heating				
HE0 91	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1992	5	13.5	5	13.5
1993	17	45.9	22	59.5
1994	12	32.4	34	91.9
1995	3	8.1	37	100.0
Frequency Missing $=442$				

HE110	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Natural Gas	36	73.5	36	73.5
Propane/Bottld g	2	4.1	38	77.6
Steam	1	2.0	39	79.6
Elec	10	20.4	49	100.0
Frequency Missing $=430$				
heat addition fuel type				
HE120	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Natural Gas	9	50.0	9	50.0
Propane/Bottld g	3	16.7	12	66.7
Oil	1	5.6	13	72.2
Elec	3	16.7	16	88.9
Other	2	11.1	18	100.0
Frequency Missing $=461$				

$\left.\begin{array}{llll}\text { OBS } & \text { HE121 } \\ 1 & \text { PORTABLES, SOME GAS, SOME ELEC. } \\ 2 & \text { WOOD AND GAS }\end{array}\right]$

Changed H2O heat

OE014		Changed refrigeration			Cumulative Percent
		Frequency	Percent	Cumulative Frequency	
No		23	69.7	23	69.7
Yes		10	30.3	33	100.0
		Frequen	Missing	$=446$	

c	Changed HVAC			
OE014B	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	5	100.0	5	100.0

Changed mfg equip				
OE014C	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	1	100.0	1	100.0
Frequency Missing $=478$				
Changed computers				
OE014D	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Frequency Missing $=479$				
Changed other1				
OE015	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No	11	26.8	11	26.8
Yes	30	73.2	41	100.0
Frequency Missing $=438$				

```
            OBS OE016
                TEMPORARY BUILDINGS W/HVAC
                EXHAUST FANS
                POOL HEATER
                LIGHTING RETROFITS
                LIGHTS
                CLOSED SHOP
                        40 NEW WASHERS
                        PHOTO PROCESSING EQUIP
                        NEW A\C IN NEW OFFICE
                        AIR COMPRESSORS
                        CHANGED WELL PUMP
                        SEE ADITION OF RELOCATABLES
                        ADDED 2 PORT. CLASSROOMS
                        SEE ADITION OF RELOCATABLES
                        SEE ADITION OF RELOCATABLES
        SEE ADITION OF RELOCATABLES
        SEE ADITION OF RELOCATABLES
        SEE ADITION OF RELOCATABLES
        SEE ADITION OF RELOCATABLES
        SEE ADITION OF RELOCATABLES
        SEE ADITION OF RELOCATABLES
        COOLERS
        AC LOWER CEILING TO MAKE
        EXCELLARATOR
        SPACE HEATING
        PROPANE HEAT
                            Changed other2
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OE017 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 34 & 89.5 & 34 & 89.5 \\
\hline Yes & & 4 & 10.5 & 38 & 100.0 \\
\hline
\end{tabular}
                    Frequency Missing = 441
                    OBS OE018
                            1 COMPUTERS.
                            2 CONVEYER SYSTEM
                            3 COMPRESSORS
    4 IT MORE SUFFIECIENT.
\begin{tabular}{cccc}
\(c\) & Changed refused \\
OE019 Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
No & 36 & 100.0 & 36
\end{tabular}

Changed dont know
\begin{tabular}{lcccc} 
OE011 Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
No & 39 & 100.0 & 39 & 100.0
\end{tabular}
\begin{tabular}{ccccc} 
Month/Year changed H2O heat \\
OE020 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
OCT1993 & 1 & 50.0 & 1 & 50.0 \\
APR1995 & 1 & 50.0 & 2 & 100.0
\end{tabular}
\begin{tabular}{cccc} 
Year changed H 2 O heat \\
OE021 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OE030 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline Added & 2 & 66.7 & 2 & 66.7 \\
\hline Added/Replaced & 1 & 33.3 & 3 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=476\)

\begin{tabular}{lccc} 
& H2O heat addition fuel type \\
OE050 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
Month/Year changed cooking equip
OE060 Frequency Percent \begin{tabular}{c} 
Cumulative Cumulative \\
Frequency Percent
\end{tabular}
Frequency Missing \(=479\)
\begin{tabular}{cccc} 
Year changed cooking equip \\
OE061 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
1993 & 2 & 100.0 & 2
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & OE080 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=479\)} \\
\hline \multicolumn{6}{|c|}{cooking equip addition fuel type} \\
\hline & OE090 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Elec & & 2 & 100.0 & 2 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=477\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OE100 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline NOV1992 & 1 & 16.7 & 1 & 16.7 \\
\hline JAN1993 & 1 & 16.7 & 2 & 33.3 \\
\hline OCT1993 & 1 & 16.7 & 3 & 50.0 \\
\hline JUN1994 & 1 & 16.7 & 4 & 66.7 \\
\hline SEP1994 & 1 & 16.7 & 5 & 83.3 \\
\hline APR1995 & 1 & 16.7 & 6 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=473\)} \\
\hline \multicolumn{5}{|c|}{Year changed refrigeration equip} \\
\hline OE101 & Frequency & Percent & \begin{tabular}{l}
Cumulative \\
Frequency
\end{tabular} & Cumulative Percent \\
\hline 1993 & 4 & 100.0 & 4 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=475\)} \\
\hline
\end{tabular}


Old refrigeration equip fuel type
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OE120 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline \multirow[t]{4}{*}{Elec} & & 5 & 100.0 & 5 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing = 474} \\
\hline & \multicolumn{5}{|l|}{refrigeration equip addition fuel type} \\
\hline & OE130 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline Elec & & 8 & 100.0 & 8 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 471} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OE140 & \begin{tabular}{l}
Month/Yea \\
Frequency
\end{tabular} & \begin{tabular}{l}
changed \\
Percent
\end{tabular} & \begin{tabular}{l}
Other1 equip \\
Cumulative Frequency
\end{tabular} & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline SEP1992 & 1 & 12.5 & 1 & 12.5 \\
\hline NOV1992 & 1 & 12.5 & 2 & 25.0 \\
\hline AUG1993 & 1 & 12.5 & 3 & 37.5 \\
\hline DEC1993 & 2 & 25.0 & 5 & 62.5 \\
\hline FEB1994 & 1 & 12.5 & 6 & 75.0 \\
\hline MAY1994 & 1 & 12.5 & 7 & 87.5 \\
\hline NOV1994 & 1 & 12.5 & 8 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 471} \\
\hline
\end{tabular}
```

Year changed Otherl equip			
OE141	Frequency	Percent	Cumulative Frequency
Cumulative	Percent		

```

```

	Old Otherl equip fuel type					
OE160	Frequency	Percent	Cumulative	Frequency		Cumulative
:---:						
Percent						

	OE170	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Elec		2	100.0	2	100.0

OE202	Frequency	Percent	Cumulative Frequency	Cumulative Percent

Frequency Missing $=479$
Made any other energy using changes?
OC010 Frequency

```
OC020
    DECREASE USAGE AT PEAK HRS W/PG&E PROGRA,
    INSTALLED TERMAL PYNE WINDOWS
    NEW WATER HEATER
    ADDED COMPUTERS
    TENANT LEFT WHICH REDUCED POWER USAGE
    ADDED COMPUTERS
    INSTALLED 4 INDIVIDUAL AIR CONDITIONER WALL UNITS
    MORE ENERGY EFFICIENT LIGHT BULBS
    ADDITION OF AIR COMPRESSOR
    ADDED COMPUTERS
    HIGHER WATTAGE PARKING LOT LIGHTS.
    CHANGED EXIT LIGHTS TO LED LIGHTS
    REMOVED PUMP,
    MORE OF THE BUILDING IS OCCUPIED
    ADDED A GENERATOR
    ADDED MORE GAS STOVES
    ADDED RADIANT BARRIER INSULATION
    A COMPUTER SYSTEM WAS ADDED.
    NEW WINDOWS AND MORE WINDOWS
    ADDED CEILING FAN IN OFFICE
    REPLACED 2 SINGLE DOOR DRYERS, WITH 2 DOUBLE STACK DRYERS.
    PUT WATER COOLER ON DRY CLEANING MACHINE
    INSTALLE AN ENERGY MANAGEMENT SYSTEM
    ADDED SOME NEON SIGNS
    RE-ENFORCED ENERGY STANDARDS & GUIDELINES
    ADDITIONAL OFFICE SPACE
    ADDITIONAL PLUG-IN EQUIPMENT
    ADDED COMPUTERS
    CHANGED 4 ROOFTOP HEATING/COOLING UNITS
    NEW WALK IN FRIDGES
    CHANGED ENERGY MANAGEMENT SYSTEM
    CHANGED TO HIGH EFF. BOILER AT SWIMMING POOL
    ENERGY MANAGEMENT SYSTEM INSTALLED
    ADDED PCS
    MORE EQUIPMENT
    ADDED SMALL COOLER
    ADDED GAS EQUIP.
    NEW FRIDGE
    NEW FRIDGE
    ELIMINTED SOME EQUIPMENTS
    ADDED GAS EQUIP.
    NEW ROOF
    ADDED A WALK IN BOX
    REPLACED WALK-IN FREEZER COMPRESSOR WITH LARGER, MORE EFFICIENT UNIT
    CHANGED LIGHTING OUTSIDE OF PROGRAM, MOTION SENSORS
    ADDED TIME CLOCKS FOR GARAGE LIGHTING
    CHANGED BASEBOARD HEATERS
    NEW WATER HEATERS
    MORE PEOPLE/ LIGHTS ARE ON MORE OFTEN.
    PUT SUN SHADES UP AND VERTICLE BLINDS
    ADDITION OF FAX MACHINE, COMPUTER AND PRINTER, AND VIDEO CAMERA AND
    RETROFIT
    ADDED A STERALIZER THAT USES A LOT OF ENERGY, HAS 390 AMP, PRETTY INT
Commercial Program Participants Page H-248 1994 PG&E Lighting Evaluation
```


	OC031	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	1992	2	9.1	2	9.1
	1993	6	27.3	8	36.4
	1994	10	45.5	18	81.8
	1995	4	18.2	22	100.0
Frequency Missing $=457$					
Is there an EMS system?					
	EM010	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No		365	83.9	365	83.9
Yes		70	16.1	435	100.0
Frequency Missing $=44$					

CP 010	Frequency	Percent	Cumulative Frequency	Cumulative Percent
No	416	99.0	416	99.0
Yes	4	1.0	420	100.0
Frequency Missing = 59				
Month/Year cogeneration installed				
CP020	Frequency	Percent	Cumulative Frequency	Cumulative Percent
DEC1991	1	100.0	1	100.0
Frequency Missing $=478$				
Year cogeneration installed				
CP 021	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1983	1	33.3	1	33.3
1993	2	66.7	3	100.0
Frequency Missing $=476$				

Appendix I
NONPARTICIPANTS TELEPHONE SURVEY RESPONSE FREQUENCIES
audit OK?

	MNO01	Frequency	Percent	Cumulative Frequency
Comulative				
Percent				

Own building?/Decis

	SC001D	Frequency	Percent	Cumulative Frequency
Cumulative				
Percent				

Firm manages prop/Decis			
			Cumulative

```
                    Own building?/Tech
\begin{tabular}{|c|c|c|c|c|c|}
\hline & SC001T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 5 & 71.4 & 5 & 71.4 \\
\hline Yes & & 2 & 28.6 & 7 & 100.0 \\
\hline
\end{tabular}
                    Frequency Missing = 451
                        Firm occupies space/Tech
\begin{tabular}{lcccc} 
FI001T & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
---------------------------------------------- \\
No & 2 & 28.6 & 2 & 28.6 \\
Yes & 5 & 71.4 & 7 & 100.0
\end{tabular}
            Frequency Missing = 451
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FI002T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 3 & 33.3 & 3 & 33.3 \\
\hline Yes & & 6 & 66.7 & 9 & 100.0 \\
\hline
\end{tabular}
Frequency Missing \(=449\)
Own building?/Light
\begin{tabular}{lcccc} 
SC001L Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
------------------------------------------------ \\
No & 1 & 50.0 & 1 & 50.0 \\
Yes & 1 & 50.0 & 2 & 100.0
\end{tabular}
Frequency Missing \(=456\)
Program Nonparticipants Page I-2 1994 PG\&E Lighting Evaluation
```



```
Frequency Missing \(=456\)
```



```
Frequency Missing \(=456\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & SC016 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 76 & 69.1 & 76 & 69.1 \\
\hline Yes & & 34 & 30.9 & 110 & 100.0 \\
\hline
\end{tabular}
Frequency Missing \(=348\)
\begin{tabular}{lccc} 
Are you the sole occupant? \\
& & & \begin{tabular}{c} 
Cumulative
\end{tabular} \\
FI003 Cumulative \\
Crequency & Percent & Frequency & Percent
\end{tabular}
Frequency Missing = 25
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIOO4 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 169 & 68.7 & 169 & 68.7 \\
\hline Yes & & 77 & 31.3 & 246 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=212\)} \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Is person decision maker \\
SC003 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
Yes & 450 & 100.0 & 450
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & SC005 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 5 & 1.1 & 5 & 1.1 \\
\hline Yes & & 444 & 98.9 & 449 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=9\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & SC006 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 4 & 0.9 & 4 & 0.9 \\
\hline Yes & & 446 & 99.1 & 450 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=8\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline IL020 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline FEB1992 & 1 & 1.6 & 1 & 1.6 \\
\hline JUN1992 & 1 & 1.6 & 2 & 3.3 \\
\hline SEP1992 & 1 & 1.6 & 3 & 4.9 \\
\hline OCT1992 & 1 & 1.6 & 4 & 6.6 \\
\hline JAN1993 & 1 & 1.6 & 5 & 8.2 \\
\hline MAR1993 & 1 & 1.6 & 6 & 9.8 \\
\hline APR1993 & 2 & 3.3 & 8 & 13.1 \\
\hline JUN1993 & 2 & 3.3 & 10 & 16.4 \\
\hline AUG1993 & 1 & 1.6 & 11 & 18.0 \\
\hline SEP1993 & 1 & 1.6 & 12 & 19.7 \\
\hline FEB1994 & 2 & 3.3 & 14 & 23.0 \\
\hline MAR1994 & 1 & 1.6 & 15 & 24.6 \\
\hline MAY1994 & 1 & 1.6 & 16 & 26.2 \\
\hline JUL1994 & 3 & 4.9 & 19 & 31.1 \\
\hline AUG1994 & 2 & 3.3 & 21 & 34.4 \\
\hline SEP1994 & 2 & 3.3 & 23 & 37.7 \\
\hline NOV1994 & 3 & 4.9 & 26 & 42.6 \\
\hline DEC1994 & 2 & 3.3 & 28 & 45.9 \\
\hline JAN1995 & 5 & 8.2 & 33 & 54.1 \\
\hline FEB1995 & 3 & 4.9 & 36 & 59.0 \\
\hline MAR1995 & 4 & 6.6 & 40 & 65.6 \\
\hline APR1995 & 8 & 13.1 & 48 & 78.7 \\
\hline MAY1995 & 5 & 8.2 & 53 & 86.9 \\
\hline JUN1995 & 2 & 3.3 & 55 & 90.2 \\
\hline JUL1995 & 6 & 9.8 & 61 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=397\)
\begin{tabular}{ccccc} 
year indoor light change \\
IL021 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 1992 & 12 & 17.4 & 12 & 17.4 \\
1993 & 31 & 44.9 & 43 & 62.3 \\
1994 & 17 & 24.6 & 60 & 87.0 \\
1995 & 9 & 13.0 & 69 & 100.0
\end{tabular}
\begin{tabular}{ccccc} 
& month/year indoor light change-2
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL026 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1992 & 1 & 8.3 & 1 & 8.3 \\
\hline 1993 & 2 & 16.7 & 3 & 25.0 \\
\hline 1994 & 9 & 75.0 & 12 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{lcccr} 
& Added or removed/4' & T-8 \\
& & & Cumulative & Cumulative \\
IL040 & Frequency & Percent & Frequency & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL041} & \multicolumn{3}{|l|}{Added or removed/8' T-8} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline No change & 92 & 88.5 & 92 & 88.5 \\
\hline Added & 9 & 8.7 & 101 & 97.1 \\
\hline Removed & 3 & 2.9 & 104 & 100.0 \\
\hline & Freque & Missing & \(=354\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL0 42} & \multicolumn{4}{|l|}{Added or removed/4' ES Fluor} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 103 & 97.2 & 103 & 97.2 \\
\hline Added & 3 & 2.8 & 106 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=352\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL043} & \multicolumn{4}{|l|}{Added or removed/8' ES Fluor} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 106 & 99.1 & 106 & 99.1 \\
\hline Added & 1 & 0.9 & 107 & 100.0 \\
\hline & Frequen & y Missing & \(=351\) & \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
& Added or removed/4' & \\
& & & T-12 \\
IL044 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL045} & \multicolumn{3}{|l|}{Added or removed/8' T-12} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline No change & 96 & 92.3 & 96 & 92.3 \\
\hline Added & 5 & 4.8 & 101 & 97.1 \\
\hline Removed & 3 & 2.9 & 104 & 100.0 \\
\hline & Frequen & Missin & \(=354\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL046 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 82 & 78.1 & 82 & 78.1 \\
\hline Added & 15 & 14.3 & 97 & 92.4 \\
\hline Removed & 8 & 7.6 & 105 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 353} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IL047 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 92 & 88.5 & 92 & 88.5 \\
\hline Added & 11 & 10.6 & 103 & 99.0 \\
\hline Removed & 1 & 1.0 & 104 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL048} & \multicolumn{4}{|l|}{Added or removed/High pres sodium} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 93 & 89.4 & 93 & 89.4 \\
\hline Added & 11 & 10.6 & 104 & 100.0 \\
\hline & Frequen & Missing & \(=354\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL049} & \multicolumn{4}{|l|}{Added or removed/Elec Ballasts} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 95 & 91.3 & 95 & 91.3 \\
\hline Added & 9 & 8.7 & 104 & 100.0 \\
\hline & Freque & y Missing & \(=354\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ILO 40 N} & \multicolumn{3}{|l|}{Number changed/4' T-8} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 0 & 2 & 10.0 & 2 & 10.0 \\
\hline 4 & 2 & 10.0 & 4 & 20.0 \\
\hline 6 & 4 & 20.0 & 8 & 40.0 \\
\hline 10 & 2 & 10.0 & 10 & 50.0 \\
\hline 14 & 1 & 5.0 & 11 & 55.0 \\
\hline 15 & 1 & 5.0 & 12 & 60.0 \\
\hline 20 & 1 & 5.0 & 13 & 65.0 \\
\hline 24 & 1 & 5.0 & 14 & 70.0 \\
\hline 32 & 1 & 5.0 & 15 & 75.0 \\
\hline 40 & 1 & 5.0 & 16 & 80.0 \\
\hline 100 & 2 & 10.0 & 18 & 90.0 \\
\hline 200 & 1 & 5.0 & 19 & 95.0 \\
\hline \multirow[t]{3}{*}{500} & 1 & 5.0 & 20 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=438\)} & \\
\hline & \multicolumn{3}{|l|}{Number changed/8' T-8} & \\
\hline IL041N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 3 & 1 & 14.3 & 1 & 14.3 \\
\hline 4 & 1 & 14.3 & 2 & 28.6 \\
\hline 8 & 1 & 14.3 & 3 & 42.9 \\
\hline 14 & 1 & 14.3 & 4 & 57.1 \\
\hline 20 & 2 & 28.6 & 6 & 85.7 \\
\hline 25 & 1 & 14.3 & 7 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=451\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL0 45N} & \multicolumn{3}{|l|}{Number changed/8' T-12} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 6 & 1 & 16.7 & 1 & 16.7 \\
\hline 10 & 3 & 50.0 & 4 & 66.7 \\
\hline 50 & 1 & 16.7 & 5 & 83.3 \\
\hline 72 & 1 & 16.7 & 6 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 452} \\
\hline \multicolumn{5}{|c|}{Number changed/Incandescent} \\
\hline ILO 4 6N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1 & 1 & 4.5 & 1 & 4.5 \\
\hline 2 & 2 & 9.1 & 3 & 13.6 \\
\hline 3 & 3 & 13.6 & 6 & 27.3 \\
\hline 4 & 1 & 4.5 & 7 & 31.8 \\
\hline 6 & 1 & 4.5 & 8 & 36.4 \\
\hline 7 & 1 & 4.5 & 9 & 40.9 \\
\hline 10 & 4 & 18.2 & 13 & 59.1 \\
\hline 12 & 1 & 4.5 & 14 & 63.6 \\
\hline 15 & 1 & 4.5 & 15 & 68.2 \\
\hline 20 & 1 & 4.5 & 16 & 72.7 \\
\hline 24 & 1 & 4.5 & 17 & 77.3 \\
\hline 30 & 1 & 4.5 & 18 & 81.8 \\
\hline 50 & 1 & 4.5 & 19 & 86.4 \\
\hline 100 & 1 & 4.5 & 20 & 90.9 \\
\hline 215 & 1 & 4.5 & 21 & 95.5 \\
\hline \multirow[t]{2}{*}{500} & 1 & 4.5 & 22 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=436\)} & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL051} & \multicolumn{4}{|l|}{Added or removed/Metal Halide} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 95 & 95.0 & 95 & 95.0 \\
\hline Added & 4 & 4.0 & 99 & 99.0 \\
\hline Removed & 1 & 1.0 & 100 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 358} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IL052} & \multicolumn{4}{|l|}{Added or removed/Mercury Vapor} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 97 & 98.0 & 97 & 98.0 \\
\hline Added & 2 & 2.0 & 99 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 359} \\
\hline \multicolumn{5}{|c|}{Added or removed/Quartz} \\
\hline IL053 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 93 & 94.9 & 93 & 94.9 \\
\hline Added & 5 & 5.1 & 98 & 100.0 \\
\hline & Frequen & Missing & \(=360\) & \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
& Added or removed/Reflectors \\
IL054 & Frequency & Percent & Cumulative & Frequency
\end{tabular} Percent

Frequency Missing \(=359\)
\begin{tabular}{|c|c|c|c|c|}
\hline IL055 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No change & 97 & 97.0 & 97 & 97.0 \\
\hline Added & 3 & 3.0 & 100 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=358\)

Program Nonparticipants Page I-16 1994 PG\&E Lighting Evaluation

\begin{tabular}{ccccc} 
Number changed/Metal Halide \\
IL051N & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 3 & 1 & 20.0 & 1 & 20.0 \\
4 & 2 & 40.0 & 3 & 60.0 \\
6 & 1 & 20.0 & 4 & 80.0 \\
12 & 1 & 20.0 & 5 & 100.0
\end{tabular}
\begin{tabular}{ccccc} 
Number changed/Mercury Vapor \\
IL052N & Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Number changed/Quartz} \\
\hline IL053N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 3 & 1 & 25.0 & 1 & 25.0 \\
\hline 8 & 1 & 25.0 & 2 & 50.0 \\
\hline 72 & 1 & 25.0 & 3 & 75.0 \\
\hline 100 & 1 & 25.0 & 4 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 454} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Number changed/Reflectors} \\
\hline IL054N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 700 & 1 & 100.0 & 1 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=457\)} \\
\hline \multicolumn{5}{|c|}{Number changed/LED Exit Lights} \\
\hline IL055N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 9 & 2 & 50.0 & 2 & 50.0 \\
\hline 14 & 1 & 25.0 & 3 & 75.0 \\
\hline 40 & 1 & 25.0 & 4 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=454\)} \\
\hline
\end{tabular}
Number changed/Watt Saver-Power Choke
IL056N Frequency Percent Frequency Prive Percent

Frequency Missing \(=458\)

\begin{tabular}{rl} 
OBS & ILO58 \\
& \\
1 & CENTURY 21 SIGN \\
2 & BALLASTS \\
3 & GROUND LIGHTS \\
4 & 1 \\
5 & DID NOT KNOW... \\
6 & OIUTSIDE SECURITY LITE \\
7 & 0 \\
8 & NEW REFLECTORS \\
9 & PHOTOCELL SENSORS \\
10 & LOW PRESSURE SODIUM \\
11 & HALOGEN \\
12 & FLOURESCENT FIXTURE \\
13 & 1 \\
14 & 1 \\
15 & 1 \\
16 & 1 \\
17 & 1 \\
18 & HI PRESSURE SODIUM \\
19 & HALLOGENS \\
20 & HALOGEN LOW DRAW \\
21 & FLORESCENT TYPE UNKWN \\
22 & HALOGEN \\
23 & METAL ARC LAMPS \\
24 & 1 \\
25 & NEON SIGNS \\
26 & NE \\
27 & 0 \\
28 & 999 \\
29 & HEAT SENSITIVE \\
30 & PHOTO CELL CONTROLS \\
31 & NEON LTG. \\
32 & NEON \\
33 & TIMER \\
34 & NEON LIGHTS \\
35 & NEON SIGN \\
36 & 999 \\
37 & OUTSIDE \\
38 & 0 \\
39 & "BI-AX FLOURESCENT" \\
40 & PHOTO SENSORS \\
41 & 1 \\
42 & 1 \\
43 & 1 \\
44 & 1 \\
&
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & FI015 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 40 & 66.7 & 40 & 66.7 \\
\hline Yes & & 20 & 33.3 & 60 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 398} \\
\hline \multicolumn{6}{|c|}{Other firms in building?} \\
\hline & FI020 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 321 & 72.6 & 321 & 72.6 \\
\hline Yes & & 121 & 27.4 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 16} \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& Number other firms in building & \\
FIO25 & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 157 & 57.5 & 157 & 57.5 \\
1 & 37 & 13.6 & 194 & 71.1 \\
2 & 21 & 7.7 & 215 & 78.8 \\
3 & 9 & 3.3 & 224 & 82.1 \\
4 & 4 & 1.5 & 228 & 83.5 \\
5 & 9 & 3.3 & 237 & 86.8 \\
6 & 7 & 2.6 & 244 & 89.4 \\
7 & 5 & 1.8 & 249 & 91.2 \\
8 & 3 & 1.1 & 252 & 92.3 \\
9 & 3 & 1.1 & 255 & 93.4 \\
10 & 2 & 0.7 & 257 & 94.1 \\
11 & 1 & 0.4 & 258 & 94.5 \\
12 & 2 & 0.7 & 260 & 95.2 \\
14 & 1 & 0.4 & 261 & 95.6 \\
15 & 1 & 0.4 & 262 & 96.0 \\
16 & 2 & 0.7 & 264 & 96.7 \\
18 & 2 & 0.7 & 266 & 97.4 \\
20 & 1 & 0.4 & 267 & 97.8 \\
27 & 1 & 0.4 & 268 & 98.2 \\
30 & 1 & 0.4 & 269 & 98.5 \\
50 & 2 & 0.7 & 271 & 99.3 \\
120 & 1 & 0.4 & 272 & 99.6 \\
125 & 1 & 0.4 & 273 & 100.0
\end{tabular}

Organizational Structure
\begin{tabular}{lcrcc} 
& FI040 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative \\
Percent
\end{tabular}
```

 OBS FIO45
 OIL, CHEM & ATOMIC INTERNATIONAL
 ELECTRO SKILLS
 AMERICAN BAPTIST HOMES OF THE WEST
 BIBETT CORP.
 LA PETITE ACADEMY INC
 PATRICK JAMES CLOTHES
 WORLDCOMM
 TITAN CORP
 CITY AND COUNTY GOVERNMENT
 CHARLES SCHWAB
 BAYCOM
 PRIORITY HEALTH SERVICES
 AUTOMOBILE CLUB OF SO. CAL
 DESTEC ENERGY INC.
 BRYANS TRUCK AND AUTO
 BS&E INC
 J E HIGGINS LUMBER
 CLASSIC PARKING
 CHARMING SHOPS
 EDISON BROS.
 TILT
 BAKERSFIELD CENTER'S, INC.
 NW TRANSPORTS
 BLUMENFELD SAN FRANCISCO THEATRES
 COMPAS
 GOODYEAR TIRE AND RUBBER CO.
 GREAT WORKS INC
 CINEMERICA
 DAIICHI & LA SLLE
 GOODYEAR TIRE
 BT OFFICE PRODUCTS INTL.
 LOEHMANNS
 CHALLENGER SCHOOLS
 CHILDREN'S DISCOVERY CENTERS OF AMERICA, INC.
 COMMUMITY SCHOOLS OF KERN CO.
 FAIRFAX SCHOOL DISTRICT
 A.R.C., FRESNO
 DIANDAS ITAL. AMER. PASTRY INC.
 BOUMIS ASSOCIATES
 DEJAVU INC.
 GORDON BIERSCH BREWING CO. INC.
 SISTERS OF ST. JOSEPH OF ORANGE COUNTY
 PHYSICIANS RESOURCE GROUP
 UNILAB
 CRESTWOOD HOSPITALS INC
 SURGICAL CARE AFFILIATESL
 TEACHERS MANAGEMENT ?-----TMI
 COMFORT CALIFORNIA, INC. OF MANOR CARE, INC.
 ALLEN & O'HARA INC.
 APPLE CO.
 HOTEL GROUP OF AMERICA
 SECURITY PACIFIC / INSIGNIA
 KIMTON HOTEL MNGT CO.
 Program Nonparticipants Page I-24 1994 PG\&E Lighting Evaluation

```
\begin{tabular}{|c|c|c|c|c|}
\hline OBS & \multicolumn{3}{|l|}{FIO45} & \\
\hline 54 & \multicolumn{3}{|l|}{HILLENBRAND INDUSTRIES} & \\
\hline 55 & \multicolumn{3}{|l|}{REED EQUIPMENT} & \\
\hline 56 & \multicolumn{3}{|l|}{LEO'S PROFESSIONAL AUDIO INC} & \\
\hline 57 & \multicolumn{3}{|l|}{W W GRAINGER, INC} & \\
\hline \multirow[t]{2}{*}{58} & ARROW ELE & TRONICS & & \\
\hline & \multicolumn{3}{|l|}{Legal Tax Status} & \\
\hline FI050 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { For-Profit } \\
& \text { Public } \\
& 501 \text { (c3) Non-proft }
\end{aligned}
\]} & 349 & 80.6 & 349 & 80.6 \\
\hline & 14 & 3.2 & 363 & 83.8 \\
\hline & 70 & 16.2 & 433 & 100.0 \\
\hline & \multicolumn{4}{|l|}{Frequency Missing \(=25\)} \\
\hline \multicolumn{5}{|c|}{Tax status of parent company} \\
\hline FIO55 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=458\)} \\
\hline \multicolumn{5}{|c|}{Where are energy decisions made} \\
\hline FIO60 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Locally on site & 369 & 82.4 & 369 & 82.4 \\
\hline Regional head of & 29 & 6.5 & 398 & 88.8 \\
\hline National head of & 23 & 5.1 & 421 & 94.0 \\
\hline Internat headoff & 1 & 0.2 & 422 & 94.2 \\
\hline PM firm/build ow & 19 & 4.2 & 441 & 98.4 \\
\hline Other & 2 & 0.4 & 443 & 98.9 \\
\hline \multirow[t]{2}{*}{both local and \(n\)} & 4 & 0.9 & 447 & 99.8 \\
\hline & 1 & 0.2 & 448 & 100.0 \\
\hline 13 & Frequency & Missing = & 10 & \\
\hline
\end{tabular}
\begin{tabular}{rl} 
OBS & FIO62 \\
& \\
1 & SCHOOL BOARD MEETING \\
2 & CORPORATE HEAD CORTERES \\
3 & MADE AT AN OWNERS' MEETING \\
4 & LOCAL AND CORPORATE \\
5 & MUTUAL AGREEMENT \\
6 & MADE COMBO LOCAL AND NATIONAL \\
7 & COMBO LOC AND REG \\
8 & O-SIT + PRES \& VP
\end{tabular}

\begin{tabular}{rrrrr} 
& Number people currently employed
\end{tabular}
Any change in number of employees?
EI020 Frequency



```

OBS EIO41
SUMMER CLERKSHIPS
INCREASE IN SUMMER; MANY PART TIME
THERE IS NO SINGLE TIME WHEN THE NUMBER OF EMPLOYEES CHANGED
SHE SAID THE NUMBER OF EMPLOYEES HAS CHANGED SEVERAL TIMES, BUT
NUMBER LOW FROM OCT TO MAY WHEN WEATHER IS LESS GOOD (= 20
DUE TO SUMMER SCHOOL SESSIONS, THE NUMBER OF EMPLOYEES FLUCTUAT
THERE USED TO BE 2 PEOPLE, ONE WAS LAID OFF.
THE NUMBER OF EMPLOYEES HAS GONE UP AND DOWN BY ONE OR TWO

OF EMPLOYEES FLUCTUATES

BETWEEN 1 AND 500
THE NUMBER OF EMPLOYEES HAS GRADUALLY DECLINED FROM 50, STARTIN
SHE SAID THE NUMBER OF EMPLOYEES FLUCTUATES BUT ONLY BY A COUPL
WINTER IS SKIING RETAIL
THE NUMBER HAS GONE DOWN AND UP, ABOUT 30 AT ITS LOWEST
THE NUMBER OF EMPLOYEES FLUCTUATES, IT HAS GONE UP AND DOWN
THE NUMBER OF EMPLOYEES FLUCTUATES FROM 50, IN THE SLOW
IT FLUCTUATES BETWEEN 40 AND 50 PEOPLE
NUMBER OF EMPLOYEES FLUCTUATES
RETAIL BUSINESS...
MORE IN THE SUMMER AND LESS IN THE WINTER
THE NUMBER HAS CHANGED BY MAYBE 1 OR 2 BUT THERE WAS NO
FLUCTUATES BETWEEN 7 AND 10 PEOPLE
"WE'RE SEASONAL,SO IT FLUCTUATES, WE MAKE DELI SALADS, WE'RE
SEASONAL ADDITION OF CLEANING PERSONEL
EIO42
THE MAXIMUM NUMBER WAS 60, BUT IT IS CHANGING CONSTANTLY
NEVER BY VERY MUCH. SHE SAID BEFORE 1992, THERE WERE PROBABLY
EMPLOYEES). THEN GOES TO 35 FOR THE OTHER MONTHS.
E
SINCE JAN 1992
G IN 1992, THE COMPANY USED TO OIL RELATED WORK,
OF PEOPLE
SEASONS, TO 95 IN SUMMERTIME.
DATE OF CHANGE, FLUCTUATES
BUSIER IN SUMMER THAN IN WINTER".
OBS EIO43
122 PEOPLE EMPLOYED THERE

```
Program Nonparticipants Page I-31 1994 PG\&E Lighting Evaluation

\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO92 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 6 & 50.0 & 6 & 50.0 \\
\hline Yes & & 6 & 50.0 & 12 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=446\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO93 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 5 & 41.7 & 5 & 41.7 \\
\hline Yes & & 7 & 58.3 & 12 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=446\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO94 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 9 & 75.0 & 9 & 75.0 \\
\hline Yes & & 3 & 25.0 & 12 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=446\)
\begin{tabular}{lcccc} 
& Outdoor Light paid thru lease \\
FI095 & Frequency & Percent & Cumulative & Frequency
\end{tabular}\(\quad\)\begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}

Frequency Missing \(=446\)

Program Nonparticipants Page I-33 1994 PG\&E Lighting Evaluation
\begin{tabular}{lcccc} 
Cooling paid thru lease \\
& & & Cumulative & Cumulative
\end{tabular}

H2O heat paid thru lease
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO97 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 4 & 33.3 & 4 & 33.3 \\
\hline Yes & & 8 & 66.7 & 12 & 100.0 \\
\hline
\end{tabular}

Frequency Missing = 446
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{FIO98} & \multicolumn{4}{|l|}{Refridgeration paid thru lease} \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 6 & 50.0 & 6 & 50.0 \\
\hline Yes & & 6 & 50.0 & 12 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=446\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FIO99 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 9 & 81.8 & 9 & 81.8 \\
\hline Yes & & 2 & 18.2 & 11 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=447\)} \\
\hline
\end{tabular}

Program Nonparticipants Page I-34 1994 PG\&E Lighting Evaluation
\begin{tabular}{cc} 
OBS FIl00 \\
1 & PORTION OF ALL \\
2 & 999
\end{tabular}
\begin{tabular}{lccc} 
Is it first lease? \\
& & \\
FI120 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{lcccc} 
Have a regular light contr? \\
& & \\
IS001 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline AW011 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 1990 & 26 & 30.6 & 26 & 30.6 \\
\hline 1991 & 9 & 10.6 & 35 & 41.2 \\
\hline 1992 & 15 & 17.6 & 50 & 58.8 \\
\hline 1993 & 20 & 23.5 & 70 & 82.4 \\
\hline 1994 & 11 & 12.9 & 81 & 95.3 \\
\hline 1995 & 4 & 4.7 & 85 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=373\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{IS010} & \multicolumn{4}{|l|}{How first learned of Prog} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Resp aproch vend & 1 & 0.9 & 1 & 0.9 \\
\hline Resp aproch PG_E & 4 & 3.5 & 5 & 4.4 \\
\hline Contd by acct re & 30 & 26.3 & 35 & 30.7 \\
\hline Contd by lit con & 10 & 8.8 & 45 & 39.5 \\
\hline Contd by elec co & 1 & 0.9 & 46 & 40.4 \\
\hline Brochure n mail & 33 & 28.9 & 79 & 69.3 \\
\hline Bill insert & 25 & 21.9 & 104 & 91.2 \\
\hline TV/Radio/News & 5 & 4.4 & 109 & 95.6 \\
\hline Other & 5 & 4.4 & 114 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=344\)} \\
\hline
\end{tabular}
\begin{tabular}{rl} 
OBS & ISO20 \\
& \\
1 & NEWSLETTER \\
2 & AT THE SCHOOL HIS CHILDREN ATTEND \\
3 & SOMEONE DID A STUDY \\
4 & WENT TO PG\&E SEMINAR \\
5 & SPOUSE WORKS FOR PG\&E
\end{tabular}
\begin{tabular}{lcccc} 
& Firm Part in any PG\&E prog? \\
& & & Cumulative & Cumulative \\
PP010 & Frequency & Percent & Frequency & Percent \\
No & 348 & 82.1 & 348 & 82.1 \\
Yes & 70 & 16.5 & 418 & 98.6 \\
Not awar othrs & 6 & 1.4 & 424 & 100.0
\end{tabular}
\begin{tabular}{ccccc} 
Year firm part in PG_E prog \\
PP020 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
1985 & 4 & 7.4 & 4 & 7.4 \\
1987 & 2 & 3.7 & 6 & 11.1 \\
1988 & 1 & 1.9 & 7 & 13.0 \\
1989 & 2 & 3.7 & 9 & 16.7 \\
1990 & 10 & 18.5 & 19 & 35.2 \\
1991 & 4 & 7.4 & 23 & 42.6 \\
1992 & 8 & 14.8 & 31 & 57.4 \\
1993 & 11 & 20.4 & 42 & 77.8 \\
1994 & 6 & 11.1 & 48 & 88.9 \\
1995 & 6 & 11.1 & 54 & 100.0
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR101 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 50 & 89.3 & 50 & 89.3 \\
\hline Yes & & 6 & 10.7 & 56 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=402\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR102 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 56 & 100.0 & 56 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=402\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR103 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 53 & 94.6 & 53 & 94.6 \\
\hline Yes & & 3 & 5.4 & 56 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR104 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 54 & 96.4 & 54 & 96.4 \\
\hline Yes & & 2 & 3.6 & 56 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=402\)} \\
\hline
\end{tabular}




Frequency Missing \(=403\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR109 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No
Yes & & \[
\begin{array}{r}
55 \\
1
\end{array}
\] & \[
\begin{array}{r}
98.2 \\
1.8
\end{array}
\] & \[
\begin{aligned}
& 55 \\
& 56
\end{aligned}
\] & \[
\begin{array}{r}
98.2 \\
100.0
\end{array}
\] \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=402\)} \\
\hline \multicolumn{6}{|c|}{Didn't do prior/2 part 2 big a hassle} \\
\hline & FR110 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No Yes & & \[
\begin{array}{r}
47 \\
9
\end{array}
\] & \[
\begin{aligned}
& 83.9 \\
& 16.1
\end{aligned}
\] & \[
\begin{aligned}
& 47 \\
& 56
\end{aligned}
\] & \[
\begin{array}{r}
83.9 \\
100.0
\end{array}
\] \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=402\)} \\
\hline \multicolumn{6}{|c|}{Didn't do prior/just remodeled} \\
\hline & FR111 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing \(=458\)
\begin{tabular}{|c|c|c|c|c|}
\hline FR112 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR113 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing \(=458\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR114 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 27 & 52.9 & 27 & 52.9 \\
\hline Yes & & 24 & 47.1 & 51 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=407\)} \\
\hline
\end{tabular}
\begin{tabular}{rl} 
OBS & FRII5 \\
1 & DIDN'T KNOW ENOUGH ABOUT IT! \\
2 & DID NOT KNOW IT PERTAINED TO \\
3 & HANDLED THROUGH CORPORATE \\
4 & THEY DIDN'T KEEP APPT \\
5 & HADN'T DECIDED TO PARTICIPAT \\
6 & DIDN'T KNOW IT QUALIFIED \\
7 & CHOSE ACCORDNG TO CRITERIA \\
8 & HAD A NEED AND FILLED IT. \\
9 & IT WAS WHAT WE WANTED \\
10 & NOT ENOUTH REPLACEMENT NEEDE \\
11 & OFFER NOT TEMPTING \\
12 & DID NOT BUY NEW LIGHTING!!! \\
13 & DIDN'T QUALIFY FOR PROGRAM \\
14 & NO PROBLEM W/ CONTRACTOR. \\
15 & VOLUNTEERS PROVIDED SERVICE. \\
16 & RECIEVED DONATIONS \\
17 & I DON'T QUALIFY \\
18 & DIND'T KNOW ENOUGH OF PROGRA \\
19 & VICTIM OF SCAM \\
20 & EQUIPMENT NOT APPROPRIATE \\
21 & WAS INSIDE PROGRAM \\
22 & NO ONE THOUGHT ABOUT IT \\
23 & FORGOT ABOUT PROGRAM \\
24 & WENT THROUGH CONTRACTOR
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR012 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{6}{*}{Yes} & & 17 & 53.1 & 17 & 53.1 \\
\hline & 2 & 4 & 12.5 & 21 & 65.6 \\
\hline & 3 & 11 & 34.4 & 32 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing \(=426\)} \\
\hline & \multicolumn{5}{|c|}{number people involved in decision} \\
\hline & FR014 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline & 1 & 19 & 32.8 & 19 & 32.8 \\
\hline & 2 & 14 & 24.1 & 33 & 56.9 \\
\hline & 3 & 16 & 27.6 & 49 & 84.5 \\
\hline & 4 & 3 & 5.2 & 52 & 89.7 \\
\hline & 5 & 1 & 1.7 & 53 & 91.4 \\
\hline & 6 & 2 & 3.4 & 55 & 94.8 \\
\hline & 7 & 1 & 1.7 & 56 & 96.6 \\
\hline & 8 & 2 & 3.4 & 58 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=400\)} \\
\hline \multicolumn{6}{|c|}{Is this person final decision maker} \\
\hline & FR015 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 23 & 37.7 & 23 & 37.7 \\
\hline Yes & & 38 & 62.3 & 61 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=397\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR016 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing \(=458\)


\begin{tabular}{|c|c|c|c|c|c|}
\hline & PR0 40 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 115 & 28.8 & 115 & 28.8 \\
\hline Yes & & 285 & 71.3 & 400 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=58\)} \\
\hline \multicolumn{6}{|c|}{Intrstd in future equip selection hlp} \\
\hline & PR0 60 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 135 & 32.7 & 135 & 32.7 \\
\hline Yes & & 278 & 67.3 & 413 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=45\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PR001 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 329 & 76.2 & 329 & 76.2 \\
\hline 0.1 & 2 & 0.5 & 331 & 76.6 \\
\hline 0.5 & 3 & 0.7 & 334 & 77.3 \\
\hline 1 & 60 & 13.9 & 394 & 91.2 \\
\hline 2 & 21 & 4.9 & 415 & 96.1 \\
\hline 3 & 8 & 1.9 & 423 & 97.9 \\
\hline 4 & 6 & 1.4 & 429 & 99.3 \\
\hline 5 & 1 & 0.2 & 430 & 99.5 \\
\hline 6 & 2 & 0.5 & 432 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 26} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PR002 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Never & 335 & 76.1 & 335 & 76.1 \\
\hline Week & 2 & 0.5 & 337 & 76.6 \\
\hline Month & 21 & 4.8 & 358 & 81.4 \\
\hline Year & 82 & 18.6 & 440 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=18\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Someone else have contact w/ acct rep} \\
\hline & PR005 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 303 & 94.1 & 303 & 94.1 \\
\hline Yes & & 19 & 5.9 & 322 & 100.0 \\
\hline
\end{tabular}
Times other has contact w/ account rep
\begin{tabular}{|c|c|c|c|c|}
\hline PR011 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Month & 1 & 11.1 & 1 & 11.1 \\
\hline Year & 8 & 88.9 & 9 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=449\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccr} 
Any other services would like \\
& & \\
PR090 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{lcccr} 
Any other services would like \\
& \\
PR092 & Frequency & Percent & Cumulative & Cumulative
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PR0 94 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 322 & 94.7 & 322 & 94.7 \\
\hline Yes & & 18 & 5.3 & 340 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 118} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & OBS & PR091 \\
\hline & 1 & GOOD IDEA TO TAKE SURVEYS LIKE THESE! \\
\hline & 2 & EASIER TO REGULATE CENTRAL GAS \\
\hline & 3 & BROWN OUT--SURGE PROTECTION \\
\hline & 4 & KISSES \\
\hline & 5 & WANTS CHANGE IN USAGE STATUS \\
\hline & 6 & WOULD LIKE HELP FROM PG\&E TO INSTALL \\
\hline & 7 & AIR CONDITION INFORMATION \\
\hline & 8 & CHEAPER RATES \\
\hline & 9 & EASE UP A LITTLE UP \\
\hline & 10 & REBATE AND FINANCING FOR HVAC! \\
\hline & 11 & PROGRAM W/VERY LOW INTEREST RATES \\
\hline & 12 & RESPOND TO CUSTOMER REQUESTS TO LOOK \\
\hline & 13 & HELP SAVE ENERGY/COST \\
\hline & 14 & MORE KNOWLEGE OF PROGRAMS \\
\hline & 15 & FREE POWER \\
\hline & 16 & RATE SUMMARY FOR GAS USAGE \\
\hline & 17 & EVALUATE AC ZONING (FOR FREE) \\
\hline & 18 & FIBEROPTIC COMMUNICATION CHANNELS \\
\hline & 19 & LOWER RATES \\
\hline & 20 & FREE LIGHTBULB REPLACEMENT \\
\hline & 21 & SPECIAL RATES FOR NON PROFITS \\
\hline & 22 & FASTER PAYMENT PROCESSING \\
\hline & 23 & REBATE IS THE BEST \\
\hline & 24 & MORE ACCURATE \\
\hline & 25 & COST FOR 3 PHASE FOR STAND BY \\
\hline & 26 & EASIER TO GET A HOLD OF \\
\hline & 27 & LOWER RATES \\
\hline & 28 & ONE DAY FREE SERVICE \\
\hline & 29 & ANALYSIS OF WHEN PEAK USE PERIODS ARE. \\
\hline & 30 & CHEAPER RATES \\
\hline & 31 & HELP SMALL BUSINESSES SAVE ENERGY BY \\
\hline & 32 & BETTER EXPLANATION OF BILLS \\
\hline & 33 & OUR COMPANY SOMETIMES HAS PROBLEMS W/ \\
\hline & 34 & LIST OF SERVICES WILLING PROVIDE \\
\hline & 35 & ON SITE VISIT TO EXPLAIN EXTERNAL \\
\hline & 36 & COMPLETE SITE SURVEY TO SUGGEST \\
\hline & 37 & BILL BASED ON HOURS OF OPERATION \\
\hline & 38 & QUICKER RESPONSE TO EMERGENCIES \\
\hline & 39 & ID \\
\hline & 40 & LOWER RATES \\
\hline & 41 & CHEEPER GAS \& ELECTRIC BILLS \\
\hline & 42 & BETTER CONACT WITH REPRESENTATIVES \\
\hline & 43 & PG\&E SHOULD PROVIDE CUSTOMERS WITH \\
\hline & 44 & LOWER PRICES \\
\hline & 45 & INFORMATION ABOUT ENERGY SAVINGS \\
\hline & 46 & NEED CLEARER INFO ABOUT BILLING PROCED \\
\hline & 47 & TO STOP USING NUCLEAR ENERGY IN CAL. \\
\hline & 48 & FREE POWER ! ! ! \\
\hline & 49 & FREQUENT ENERGY EFFICIENCY ADVICE \\
\hline & 50 & ALTERNATIVES TO AIR CONDITIONING AT A \\
\hline & 51 & FREE ELECTRICITY! \\
\hline & 52 & WARNINGS BEFORE POWER SHUTOFF \\
\hline & 53 & GIVE INFO ON BILL AMT CHANGES -- WHY \\
\hline \multicolumn{2}{|l|}{Program Nonparticipants} & Pagts I-52 1994 PG\&E Lighting \\
\hline
\end{tabular}
```

 OBS PR091
 54 INFO ON HVAC
 5 5 ~ C U T ~ D O W N ~ O U T ~ P O W E R ~ U S A G E ~
 56 PHONE WITH HUMAN RESPONDEE
 57 TAKE CARE OF TREE GROWTH THAT
 5 8 ~ W A R N I N G S ~ A B O U T ~ P O W E R ~ F A I L I U R E S
 59 WOULD LIKE ASSISTANCE IN DTERMINING
 60 CHEAPER RATES
 6 1 ~ P H A M P L E T S ~
 62 ENERGY AUDIT DONE THERE
 63 NEED BETTER INFO ON ESTHETIC CONCERNS.
 6 4 ~ J B E T T E R ~ P U B L I C I Z E ~ R E B A T E ~ P R O G R A M S ~
 65 WOULD LIKE TO BE ABLE TO SELF VERIFY
 66 BETTER STREET LIGHTING
 67 REPLACEMENT OF REFLECTIVE WINDOWS
 6 8 ~ H E ~ G E T S ~ 5 ~ B I L L S ~ N O W ~ A N D ~ W O N D E R S ~ I F ~
 69 WOULD LIKE TO SEE SOMETHING LIKE TIME
 70 IMPROVE QUALITY OF POWER IN NEIGHBORHO
 71 LARGER TRANSFORMER
 OBS PR093
ON-SITE INSPECTIONS AND AUDITS TO
WE NEED KISSING TO GO ALONG WITH THE S
WANTS HELP WITH HIGH VOLTAGE WIRES
A LINE TO SOME OUTDOOR LIGHTING THEY
AT METERS (POWER SURGES)
EVAL EFFICIENCY OF WINDOWS (FOR FREE)
MAKE SURE STREET LIGHTING WORKS
ALL BILLING SHOULD BE DONE AT THE SAME
MORE KNOWLEDGE ABOUT PROGRAMS
GOING DIRECTLY TO THEM, HELP THEM
COMPUTRS BECAUSE OF POWER FLUCTUATIONS
LIGHTING AND TIMING SYSTEM
MORE ENERGY EFFICIENCY
PROGRAM Z???
BILLING CLARIFICATION SERVICE
INFORMATION ON SOLAR CELLS, SECONDARY
URES
NEW TECHNOLOGY UPDATES
REDUCED RATE.
LOW RATES!
THEY ARE CHANGING
INTERFERES WITH POWER LINES.
WHETHER RTROFITTING IS COST EFFECTIVE
USE OF MORE EE BULBS, FOR EXAMPLE
METER READING AND POWER USAGE
LOW E-VALUE WINDOW REPLACEMENTS
THERE IS SOME WAY TO COMPACT THAT INTO
OF USE PROGRAM ..TO SEE INCENTIVE TO
OOD..
DOUBLING OF EXISTING SERVICES
Program Nonparticipants Page I-53 1994 PG\&E Lighting Evaluation

```
\begin{tabular}{|c|c|}
\hline OBS & PR095 \\
\hline 1 & SURVEY ELECTRICITY USAGE. \\
\hline 2 & ANY SAVINGS-AIDS, EE OR OTHERWISE. \\
\hline 3 & SCREWING \\
\hline 4 & WOULD LIKE TO INSTALL. \\
\hline 5 & MORE CONTACT W/REP \\
\hline 6 & NEED AUDIT FROM PGE INSTEAD OF BROKER \\
\hline 7 & TIME \\
\hline 8 & MORE RESPONSIVE, LET THEM KNOW \\
\hline 9 & CHOOSE AND INSTALL EQUIPMENT \\
\hline 10 & PG\&E COULD HELP OFFER SOLUTIONS \\
\hline 11 & FREE ELECTRICITY \\
\hline 12 & MORE FAIR BILLING RATINGS \\
\hline 13 & LIGHTING AND OTHER ENERGY OPTIONS! \\
\hline 14 & DISCOUNTS FOR EE EFFORTS BY CUSTOMERS \\
\hline 15 & MORE EE/REBATE INFO... \\
\hline 16 & LOWER RATES \\
\hline 17 & BEFORE SIGNING NEW LEASES \\
\hline 18 & ONE BILLING STATEMENT \\
\hline 19 & SAVE ENGERY FOR BUS. DURING PEAK HRS. \\
\hline & More EE info and energy audits \\
\hline PR096 & Frequency Percent Frequency Cumulative \\
\hline & Frequency Missing \(=458\) \\
\hline & Financial Criteria/Payback \\
\hline DC010 & Frequency Percent Frequency \begin{tabular}{c} 
Cumulative \(\left.\begin{array}{c}\text { Cumulative } \\
\text { Percent }\end{array}\right)\)
\end{tabular} \\
\hline No & \(\begin{array}{llll}147 & 43.4 & 147 & 43.4\end{array}\) \\
\hline Yes & 192 56.6 339 100.0 \\
\hline & Frequency Missing \(=119\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & DC011 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 250 & 72.9 & 250 & 72.9 \\
\hline \multirow[t]{4}{*}{Yes} & & 93 & 27.1 & 343 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing \(=115\)} \\
\hline & \multicolumn{5}{|c|}{Financial Criteria/Net Pres Value} \\
\hline & DC012 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 262 & 75.9 & 262 & 75.9 \\
\hline \multirow[t]{4}{*}{Yes} & & 83 & 24.1 & 345 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing = 113} \\
\hline & \multicolumn{5}{|c|}{Financial Criteria/Other} \\
\hline & DC013 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 336 & 90.8 & 336 & 90.8 \\
\hline \multirow[t]{2}{*}{Yes} & & 34 & 9.2 & 370 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing \(=88\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DC016} & \multirow[b]{2}{*}{Frequency} & \multicolumn{2}{|l|}{Initial cost} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & & Percent & Cumulative Frequency & \\
\hline \multirow[t]{3}{*}{1} & 3 & 100.0 & 3 & 100.0 \\
\hline & \multicolumn{3}{|r|}{Frequency Missing \(=455\)} & \\
\hline & & Operating & cost & \\
\hline DC017 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{1} & 2 & 100.0 & 2 & 100.0 \\
\hline & \multicolumn{3}{|r|}{Frequency Missing \(=456\)} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DC020 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1 yr or < & 37 & 24.7 & 37 & 24.7 \\
\hline 2 yr or < & 56 & 37.3 & 93 & 62.0 \\
\hline 3 yr or < & 21 & 14.0 & 114 & 76.0 \\
\hline 4 yr or < & 5 & 3.3 & 119 & 79.3 \\
\hline 5 yr or < & 18 & 12.0 & 137 & 91.3 \\
\hline 6 yr or < & 1 & 0.7 & 138 & 92.0 \\
\hline 7 yr or < & 3 & 2.0 & 141 & 94.0 \\
\hline 10 yr or < & 1 & 0.7 & 142 & 94.7 \\
\hline Other & 8 & 5.3 & 150 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=308\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline DC050 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & 233 & 75.2 & 233 & 75.2 \\
\hline Yes & 77 & 24.8 & 310 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=148\)} \\
\hline \multicolumn{5}{|c|}{EE critera high/short or lower/long} \\
\hline DC051 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Higher/Shorter & 41 & 74.5 & 41 & 74.5 \\
\hline Lower/Longer & 14 & 25.5 & 55 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 403} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
Any locats of bisns part \(\mathrm{n} \mathrm{RE/CI}\) \\
BC021 & Frequency & Percent & Cumulative & Frequency
\end{tabular} Percent
\begin{tabular}{|c|c|c|c|c|}
\hline BC022 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 1 & 3.8 & 1 & 3.8 \\
\hline 1 & 10 & 38.5 & 11 & 42.3 \\
\hline 2 & 7 & 26.9 & 18 & 69.2 \\
\hline 3 & 4 & 15.4 & 22 & 84.6 \\
\hline 5 & 2 & 7.7 & 24 & 92.3 \\
\hline 10 & 1 & 3.8 & 25 & 96.2 \\
\hline 13 & 1 & 3.8 & 26 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=432\)} \\
\hline
\end{tabular}

\begin{tabular}{lcccc} 
& Future lights/high or standard EE \\
FR075 & Frequency & Percent & Cumulative & Cumulative
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR077 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 13 & 27.7 & 13 & 27.7 \\
\hline Yes & & 34 & 72.3 & 47 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=411\)} \\
\hline \multicolumn{6}{|c|}{Future Lights/4' T-8} \\
\hline & FR080 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline & 0 & 28 & 70.0 & 28 & 70.0 \\
\hline & 1 & 1 & 2.5 & 29 & 72.5 \\
\hline & 9 & 1 & 2.5 & 30 & 75.0 \\
\hline & 46 & 1 & 2.5 & 31 & 77.5 \\
\hline & 50 & 2 & 5.0 & 33 & 82.5 \\
\hline & 84 & 1 & 2.5 & 34 & 85.0 \\
\hline & 100 & 1 & 2.5 & 35 & 87.5 \\
\hline & 200 & 1 & 2.5 & 36 & 90.0 \\
\hline & 300 & 1 & 2.5 & 37 & 92.5 \\
\hline & 1050 & 1 & 2.5 & 38 & 95.0 \\
\hline & 3500 & 1 & 2.5 & 39 & 97.5 \\
\hline & 10000 & 1 & 2.5 & 40 & 100.0 \\
\hline & & Frequen & y Missing & \(=418\) & \\
\hline
\end{tabular}

\begin{tabular}{cccc} 
Future Lights/4' ES Fluor \\
FR082 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative & Percent
\end{tabular}
\begin{tabular}{cccc} 
Future Lights/8' ES Fluor \\
FR083 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR084 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 35 & 97.2 & 35 & 97.2 \\
\hline 9 & 1 & 2.8 & 36 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=422\)} \\
\hline \multicolumn{5}{|c|}{Future Lights/8' T-12} \\
\hline FR085 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 34 & 94.4 & 34 & 94.4 \\
\hline 6 & 1 & 2.8 & 35 & 97.2 \\
\hline 9 & 1 & 2.8 & 36 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=422\)} \\
\hline \multicolumn{5}{|c|}{Future Lights/Incandescent} \\
\hline FR086 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 36 & 97.3 & 36 & 97.3 \\
\hline 9 & 1 & 2.7 & 37 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=421\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR087 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 34 & 82.9 & 34 & 82.9 \\
\hline 3 & 1 & 2.4 & 35 & 85.4 \\
\hline 9 & 1 & 2.4 & 36 & 87.8 \\
\hline 50 & 1 & 2.4 & 37 & 90.2 \\
\hline 180 & 1 & 2.4 & 38 & 92.7 \\
\hline 200 & 2 & 4.9 & 40 & 97.6 \\
\hline 400 & 1 & 2.4 & 41 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Future Lights/High pres sodium \\
FR088 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{ccccc} 
Future Lights/Elec Ballasts \\
FR089 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
O & 32 & 84.2 & 32 & 84.2 \\
9 & 1 & 2.6 & 33 & 86.8 \\
120 & 1 & 2.6 & 34 & 89.5 \\
345 & 1 & 2.6 & 35 & 92.1 \\
778 & 1 & 2.6 & 36 & 94.7 \\
3500 & 1 & 2.6 & 37 & 97.4 \\
10000 & 1 & 2.6 & 38 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR090 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 35 & 94.6 & 35 & 94.6 \\
\hline 4 & 1 & 2.7 & 36 & 97.3 \\
\hline 9 & 1 & 2.7 & 37 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=421\)} \\
\hline \multicolumn{5}{|c|}{Future Lights/Metal Halide} \\
\hline FR091 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 34 & 94.4 & 34 & 94.4 \\
\hline 9 & 1 & 2.8 & 35 & 97.2 \\
\hline 12 & 1 & 2.8 & 36 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=422\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
Future Lights/Mercury Vapor \\
FR092 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 0 & 34 & 89.5 & 34 & 89.5 \\
9 & 1 & 2.6 & 35 & 92.1 \\
12 & 1 & 2.6 & 36 & 94.7 \\
30 & 1 & 2.6 & 37 & 97.4 \\
100 & 1 & 2.6 & 38 & 100.0
\end{tabular}
\begin{tabular}{cccc}
\multicolumn{5}{c}{ Future Lights/Quartz } \\
FR093 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative & Percent
\end{tabular}
\begin{tabular}{cccc} 
Future Lights/Reflectors \\
FR094 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{cccc} 
Future Lights/LED Exit Lights \\
FR095 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR096 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{3}{*}{0} & 40 & 100.0 & 40 & 100.0 \\
\hline & Frequen & y Missin & \(=418\) & \\
\hline & \multicolumn{3}{|c|}{Future Lights/Other} & \\
\hline FR097 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 31 & 72.1 & 31 & 72.1 \\
\hline 1 & 7 & 16.3 & 38 & 88.4 \\
\hline 9 & 1 & 2.3 & 39 & 90.7 \\
\hline 10 & 1 & 2.3 & 40 & 93.0 \\
\hline 28 & 1 & 2.3 & 41 & 95.3 \\
\hline 36 & 1 & 2.3 & 42 & 97.7 \\
\hline 300 & 1 & 2.3 & 43 & 100.0 \\
\hline & Frequen & y Missing & \(=415\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{BC011} & \multicolumn{3}{|l|}{Main business activity} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline Office & 91 & 20.8 & 91 & 20.8 \\
\hline Retail (no-food) & 53 & 12.1 & 144 & 33.0 \\
\hline Manuf/Assmbly & 7 & 1.6 & 151 & 34.6 \\
\hline Warehouse & 10 & 2.3 & 161 & 36.8 \\
\hline Restaurant & 21 & 4.8 & 182 & 41.6 \\
\hline Grocery Store & 13 & 3.0 & 195 & 44.6 \\
\hline School & 33 & 7.6 & 228 & 52.2 \\
\hline Hotel/Motel & 31 & 7.1 & 259 & 59.3 \\
\hline Hospital & 1 & 0.2 & 260 & 59.5 \\
\hline Collg/Univ & 4 & 0.9 & 264 & 60.4 \\
\hline Health Care & 10 & 2.3 & 274 & 62.7 \\
\hline Municipalty & 2 & 0.5 & 276 & 63.2 \\
\hline Indust procss & 3 & 0.7 & 279 & 63.8 \\
\hline Other & 158 & 36.2 & 437 & 100.0 \\
\hline & Frequency & Missing = & & \\
\hline
\end{tabular}
```

 OBS BC012
 1 AIRCRAFT MAINTENANCE
 2 SOCIAL CLUB
 3 ALL LEASED SPACE
 R RENTAL
 5 MEETING OF GIRL SCOUTS
 6 APARTMENT RENTALS
 7 APARTMENT
 CHURCH LIBRARY
 9 CHURCH HALL
 10 LEGAL SERVICES
 11 CONSTRUCTION, GEOTECHNICAL
 12 THEATRE
 13 TESTING & INSPECTIONS
 14 RADIO STATION
 15 RADIO STATION
 16 UNION OFFICE
 17 MEETINGS
 18 MEETING & BANDQUET & SPA FACIL.
 19 BANKING
 20 HELICOPTER OPERATIONS
 21 RADIO STATIONS
 22 RADIO BROADCASTING
 23 APARTMENT BUILDING
 24 LABOR UNION
 25 AGRICULTURAL CONSULTING&TESTING
 26 ENGINEERING AND TESTING
 27 CHILD CARE
 28 ALCOHOL AND DRUG DETOX
 29 RV PARK
 30 DAY CARE CENTER
 31 TRANSPORTATION
 32 SR. CITIZEN RESIDENCE
 33 SPACE RENTAL 4 SPECIAL OCCASION
 34 RESEARCH & DEVELOPMENT
 35 R&
 36 CREDIT UNION
 37 MARINA BOAT STORAGE FACILITY
 38 OFFICE AND MEALS FOR HOMEMLESS
 39 TV BROADCASTING
 40 TRANSMITTER SITE
 4 1 ~ M I S S I O N ~
 42 BUSINESS SERVICES
 43 SHIP PILOTING STATION
 4 4 \text { TRAINING, WAREHOUSE, ADMIN.}
 45 LIBRARY
 46 CHAPEL
 47 RE[PAIR ELECTRIC MOTORS
 48 DISTRIBUTION
 49 HARDWARE/CLEANING GEAR
 50 BEAUTY SALON
 51 SERVICE COMPANY
 52 BARBER SHOP
 53 MASSAGE
 Program Nonparticipants Page I-70 1994 PG\&E Lighting Evaluation

```

```

 OBS BC012
 107 AUTO BODY
 108 MOVIE THEATRE
 109 PARKING FACILITY
 110 MALL
 111 TIRE SALES/RETREAD
 112 BOWLING ALLEY
 113 OFFICE PRODUCTS DISTRIBUTION
 114 PARKING SERVICE
 115 GOLF COURSE
 116 LAUNDRY STORE
 117 CAR WASH
 118 GOLF COURSE
 119 SCHOOL
 120 SCHOOL
 121 CHURC
 122 SCHOOL
 123 LIQUOR AND CONVENIENCE STORE
 124 BAKERY
 125 BAKERY
 126 MEAT SALES
 127 DELI BAKERY
 128 PIZZA PRODUCTION
 129 MEAT PROCESSING PLANT
 130 LIQUOR STORE
 131 RETAIL FISH AND POULTRY
 132 BAKERY
 133 WHOLESALE BAKERY
 134 COCKTAIL LOUNGE
 135 BAR
 136 NIGHTCLUB
 137 BLUES CLUB
 138 BAR
 139 CONCERT HALL
 140 EVENT PRODUCTION
 141 SPORTS BAR
 142 NIGHTCLUB
 143 NIGHTCLUB
 144 BOWLING!
 145 DENTAL
 146 REST HOME
 147 PLASTIC SURGERY
 148 COUNTRY CLUB
 149 LABORATORY & OFFICE
 150 HEALTH CLUB & CHIROPRACTIC
 151 WOMAN'S GYM
 152 CONVALESENT HOME\HOSP
 153 YACHT CLUB
 154 MEDICAL LAB
 155 OUTPATIENT SURGERY
 156 FITNESS CLUB
 157 RV PARK
 158 RENT RV SITES OVERNIGHT.
 159 EXPORT COMPANY FOR BLDG MATERIA
 Program Nonparticipants Page I-72 1994 PG\&E Lighting Evaluation

```
\begin{tabular}{|c|c|c|}
\hline OBS & BC012 & \\
\hline 160 & WRECKING YARD & \\
\hline 161 & WHOLESALE PRODUCE & \\
\hline 162 & RECYCLE OPERATION & \\
\hline 163 & INDUS. EQUIP RENTAL & \\
\hline 164 & WHOLESALE MEAT & \\
\hline 165 & DISTRIBUTION FACILITY & \\
\hline 166 & WHOLESALE MEAT & \\
\hline 167 & WHOLESALE PRODUCE & \\
\hline 168 & SALE CASH REGISTER & \\
\hline 169 & WHOLESALE PRODUCE & \\
\hline 170 & SHIP * RECEIV AUTO WAREHOUSE & \\
\hline 171 & RESTAURANT SUPPLY SALES & \\
\hline 172 & BUS REPAIR & \\
\hline 173 & DISTRIBUTION & \\
\hline 174 & TRANSMISSION TOWER & \\
\hline 175 & INDUS/COMMER SUPPLY COMPANY & \\
\hline 176 & GROWERS, PACKER, \& SHIPPERS & \\
\hline & Since Jan1992, size changed & \\
\hline FC110 & Frequency Percent \(\begin{array}{r}\text { Cumulative } \\ \text { Frequency }\end{array}\) & Cumulative Percent \\
\hline Increasd space & \(29 \quad 6.5129\) & 6.5 \\
\hline Decreasd space & \(2 \quad 0.4\) & 6.9 \\
\hline Stayed same & 416 93.1 447 & 100.0 \\
\hline & Frequency Missing = 11 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FC120 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 32 & 1 & 3.8 & 1 & 3.8 \\
\hline 200 & 1 & 3.8 & 2 & 7.7 \\
\hline 400 & 1 & 3.8 & 3 & 11.5 \\
\hline 450 & 1 & 3.8 & 4 & 15.4 \\
\hline 500 & 1 & 3.8 & 5 & 19.2 \\
\hline 800 & 1 & 3.8 & 6 & 23.1 \\
\hline 1000 & 1 & 3.8 & 7 & 26.9 \\
\hline 1200 & 1 & 3.8 & 8 & 30.8 \\
\hline 1500 & 1 & 3.8 & 9 & 34.6 \\
\hline 1600 & 1 & 3.8 & 10 & 38.5 \\
\hline 1800 & 2 & 7.7 & 12 & 46.2 \\
\hline 2000 & 1 & 3.8 & 13 & 50.0 \\
\hline 2400 & 1 & 3.8 & 14 & 53.8 \\
\hline 2500 & 2 & 7.7 & 16 & 61.5 \\
\hline 2700 & 1 & 3.8 & 17 & 65.4 \\
\hline 3000 & 2 & 7.7 & 19 & 73.1 \\
\hline 5000 & 1 & 3.8 & 20 & 76.9 \\
\hline 6000 & 1 & 3.8 & 21 & 80.8 \\
\hline 8000 & 2 & 7.7 & 23 & 88.5 \\
\hline 9000 & 1 & 3.8 & 24 & 92.3 \\
\hline 15000 & 1 & 3.8 & 25 & 96.2 \\
\hline 500000 & 1 & 3.8 & 26 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FC130 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline FEB1992 & 1 & 10.0 & 1 & 10.0 \\
\hline AUG1992 & 1 & 10.0 & 2 & 20.0 \\
\hline OCT1992 & 1 & 10.0 & 3 & 30.0 \\
\hline JAN1993 & 1 & 10.0 & 4 & 40.0 \\
\hline APR1993 & 1 & 10.0 & 5 & 50.0 \\
\hline AUG1993 & 1 & 10.0 & 6 & 60.0 \\
\hline NOV1994 & 1 & 10.0 & 7 & 70.0 \\
\hline JAN1995 & 1 & 10.0 & 8 & 80.0 \\
\hline MAY1995 & 1 & 10.0 & 9 & 90.0 \\
\hline JUL1995 & 1 & 10.0 & 10 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=448\)} \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Year of area change \\
FC131 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{ccccc} 
& Month/Year of area increase occupied
\end{tabular}

Frequency Missing \(=448\)
\begin{tabular}{ccccc} 
& Year of area increase occupied \\
FC141 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 1992 & 3 & 27.3 & 3 & 27.3 \\
1993 & 5 & 45.5 & 8 & 72.7 \\
1994 & 2 & 18.2 & 10 & 90.9 \\
1995 & 1 & 9.1 & 11 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR033 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline JAN1970 & 1 & 2.0 & 1 & 2.0 \\
\hline AUG1980 & 1 & 2.0 & 2 & 4.1 \\
\hline JUL1981 & 1 & 2.0 & 3 & 6.1 \\
\hline MAR1988 & 1 & 2.0 & 4 & 8.2 \\
\hline FEB1989 & 1 & 2.0 & 5 & 10.2 \\
\hline MAR1989 & 1 & 2.0 & 6 & 12.2 \\
\hline OCT1989 & 1 & 2.0 & 7 & 14.3 \\
\hline DEC1989 & 1 & 2.0 & 8 & 16.3 \\
\hline APR1990 & 1 & 2.0 & 9 & 18.4 \\
\hline JUN1990 & 1 & 2.0 & 10 & 20.4 \\
\hline SEP1990 & 1 & 2.0 & 11 & 22.4 \\
\hline JUL1991 & 1 & 2.0 & 12 & 24.5 \\
\hline OCT1991 & 1 & 2.0 & 13 & 26.5 \\
\hline JAN1992 & 1 & 2.0 & 14 & 28.6 \\
\hline FEB1992 & 1 & 2.0 & 15 & 30.6 \\
\hline JUN1992 & 1 & 2.0 & 16 & 32.7 \\
\hline AUG1992 & 2 & 4.1 & 18 & 36.7 \\
\hline JAN1993 & 1 & 2.0 & 19 & 38.8 \\
\hline MAY1993 & 1 & 2.0 & 20 & 40.8 \\
\hline AUG1993 & 3 & 6.1 & 23 & 46.9 \\
\hline FEB1994 & 1 & 2.0 & 24 & 49.0 \\
\hline MAR1994 & 2 & 4.1 & 26 & 53.1 \\
\hline MAY1994 & 1 & 2.0 & 27 & 55.1 \\
\hline JUN1994 & 1 & 2.0 & 28 & 57.1 \\
\hline JUL1994 & 3 & 6.1 & 31 & 63.3 \\
\hline AUG1994 & 1 & 2.0 & 32 & 65.3 \\
\hline OCT1994 & 2 & 4.1 & 34 & 69.4 \\
\hline DEC1994 & 1 & 2.0 & 35 & 71.4 \\
\hline JAN1995 & 2 & 4.1 & 37 & 75.5 \\
\hline FEB1995 & 3 & 6.1 & 40 & 81.6 \\
\hline APR1995 & 1 & 2.0 & 41 & 83.7 \\
\hline MAY1995 & 1 & 2.0 & 42 & 85.7 \\
\hline JUN1995 & 3 & 6.1 & 45 & 91.8 \\
\hline JUL1995 & 4 & 8.2 & 49 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=409\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FR034 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 1 & 0.3 & 1 & 0.3 \\
\hline Never remodled & 197 & 57.9 & 198 & 58.2 \\
\hline 10 & 1 & 0.3 & 199 & 58.5 \\
\hline 85 & 1 & 0.3 & 200 & 58.8 \\
\hline 1954 & 1 & 0.3 & 201 & 59.1 \\
\hline 1956 & 2 & 0.6 & 203 & 59.7 \\
\hline 1965 & 1 & 0.3 & 204 & 60.0 \\
\hline 1970 & 3 & 0.9 & 207 & 60.9 \\
\hline 1971 & 1 & 0.3 & 208 & 61.2 \\
\hline 1973 & 2 & 0.6 & 210 & 61.8 \\
\hline 1975 & 1 & 0.3 & 211 & 62.1 \\
\hline 1978 & 1 & 0.3 & 212 & 62.4 \\
\hline 1979 & 3 & 0.9 & 215 & 63.2 \\
\hline 1980 & 5 & 1.5 & 220 & 64.7 \\
\hline 1982 & 1 & 0.3 & 221 & 65.0 \\
\hline 1983 & 1 & 0.3 & 222 & 65.3 \\
\hline 1984 & 2 & 0.6 & 224 & 65.9 \\
\hline 1985 & 14 & 4.1 & 238 & 70.0 \\
\hline 1986 & 5 & 1.5 & 243 & 71.5 \\
\hline 1987 & 4 & 1.2 & 247 & 72.6 \\
\hline 1988 & 7 & 2.1 & 254 & 74.7 \\
\hline 1989 & 14 & 4.1 & 268 & 78.8 \\
\hline 1990 & 7 & 2.1 & 275 & 80.9 \\
\hline 1991 & 8 & 2.4 & 283 & 83.2 \\
\hline 1992 & 20 & 5.9 & 303 & 89.1 \\
\hline 1993 & 16 & 4.7 & 319 & 93.8 \\
\hline 1994 & 12 & 3.5 & 331 & 97.4 \\
\hline 1995 & 9 & 2.6 & 340 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & FR035 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 38 & 58.5 & 38 & 58.5 \\
\hline Yes & & 27 & 41.5 & 65 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=393\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF1F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 65 & 14.9 & 65 & 14.9 \\
\hline 1:00 & 4 & 0.9 & 69 & 15.9 \\
\hline 2:00 & 3 & 0.7 & 72 & 16.6 \\
\hline 3:00 & 1 & 0.2 & 73 & 16.8 \\
\hline 4:00 & 2 & 0.5 & 75 & 17.2 \\
\hline 4:30 & 1 & 0.2 & 76 & 17.5 \\
\hline 5:00 & 11 & 2.5 & 87 & 20.0 \\
\hline 5:15 & 1 & 0.2 & 88 & 20.2 \\
\hline 5:30 & 3 & 0.7 & 91 & 20.9 \\
\hline 6:00 & 37 & 8.5 & 128 & 29.4 \\
\hline 6:30 & 13 & 3.0 & 141 & 32.4 \\
\hline 6:45 & 2 & 0.5 & 143 & 32.9 \\
\hline 7:00 & 58 & 13.3 & 201 & 46.2 \\
\hline 7:30 & 26 & 6.0 & 227 & 52.2 \\
\hline 7:45 & 1 & 0.2 & 228 & 52.4 \\
\hline 8:00 & 83 & 19.1 & 311 & 71.5 \\
\hline 8:15 & 2 & 0.5 & 313 & 72.0 \\
\hline 8:30 & 25 & 5.7 & 338 & 77.7 \\
\hline 9:00 & 43 & 9.9 & 381 & 87.6 \\
\hline 9:14 & 1 & 0.2 & 382 & 87.8 \\
\hline 9:30 & 5 & 1.1 & 387 & 89.0 \\
\hline 10:00 & 26 & 6.0 & 413 & 94.9 \\
\hline 11:00 & 9 & 2.1 & 422 & 97.0 \\
\hline 11:30 & 1 & 0.2 & 423 & 97.2 \\
\hline 12:00 & 2 & 0.5 & 425 & 97.7 \\
\hline 13:30 & 1 & 0.2 & 426 & 97.9 \\
\hline 14:00 & 1 & 0.2 & 427 & 98.2 \\
\hline 15:00 & 2 & 0.5 & 429 & 98.6 \\
\hline 16:00 & 1 & 0.2 & 430 & 98.9 \\
\hline 16:30 & 1 & 0.2 & 431 & 99.1 \\
\hline 18:00 & 1 & 0.2 & 432 & 99.3 \\
\hline 19:30 & 1 & 0.2 & 433 & 99.5 \\
\hline 24:00 & 2 & 0.5 & 435 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=23\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF2F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 230 & 54.8 & 230 & 54.8 \\
\hline 1:00 & 3 & 0.7 & 233 & 55.5 \\
\hline 2:00 & 1 & 0.2 & 234 & 55.7 \\
\hline 4:00 & 1 & 0.2 & 235 & 56.0 \\
\hline 4:30 & 1 & 0.2 & 236 & 56.2 \\
\hline 5:00 & 4 & 1.0 & 240 & 57.1 \\
\hline 5:30 & 1 & 0.2 & 241 & 57.4 \\
\hline 6:00 & 18 & 4.3 & 259 & 61.7 \\
\hline 6:30 & 3 & 0.7 & 262 & 62.4 \\
\hline 7:00 & 22 & 5.2 & 284 & 67.6 \\
\hline 7:30 & 2 & 0.5 & 286 & 68.1 \\
\hline 8:00 & 38 & 9.0 & 324 & 77.1 \\
\hline 8:30 & 6 & 1.4 & 330 & 78.6 \\
\hline 9:00 & 33 & 7.9 & 363 & 86.4 \\
\hline 9:14 & 1 & 0.2 & 364 & 86.7 \\
\hline 9:30 & 7 & 1.7 & 371 & 88.3 \\
\hline 10:00 & 25 & 6.0 & 396 & 94.3 \\
\hline 11:00 & 10 & 2.4 & 406 & 96.7 \\
\hline 12:00 & 4 & 1.0 & 410 & 97.6 \\
\hline 13:00 & 1 & 0.2 & 411 & 97.9 \\
\hline 14:00 & 1 & 0.2 & 412 & 98.1 \\
\hline 16:00 & 2 & 0.5 & 414 & 98.6 \\
\hline 16:30 & 1 & 0.2 & 415 & 98.8 \\
\hline 19:30 & 1 & 0.2 & 416 & 99.0 \\
\hline 24:00 & 4 & 1.0 & 420 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=38\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF3F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 287 & 68.8 & 287 & 68.8 \\
\hline 1:00 & 3 & 0.7 & 290 & 69.5 \\
\hline 2:00 & 1 & 0.2 & 291 & 69.8 \\
\hline 4:00 & 1 & 0.2 & 292 & 70.0 \\
\hline 5:00 & 3 & 0.7 & 295 & 70.7 \\
\hline 5:30 & 1 & 0.2 & 296 & 71.0 \\
\hline 6:00 & 16 & 3.8 & 312 & 74.8 \\
\hline 6:30 & 2 & 0.5 & 314 & 75.3 \\
\hline 7:00 & 15 & 3.6 & 329 & 78.9 \\
\hline 8:00 & 13 & 3.1 & 342 & 82.0 \\
\hline 8:30 & 4 & 1.0 & 346 & 83.0 \\
\hline 9:00 & 16 & 3.8 & 362 & 86.8 \\
\hline 10:00 & 23 & 5.5 & 385 & 92.3 \\
\hline 11:00 & 14 & 3.4 & 399 & 95.7 \\
\hline 11:30 & 2 & 0.5 & 401 & 96.2 \\
\hline 12:00 & 5 & 1.2 & 406 & 97.4 \\
\hline 13:00 & 1 & 0.2 & 407 & 97.6 \\
\hline 14:00 & 1 & 0.2 & 408 & 97.8 \\
\hline 16:00 & 1 & 0.2 & 409 & 98.1 \\
\hline 16:30 & 1 & 0.2 & 410 & 98.3 \\
\hline 17:00 & 1 & 0.2 & 411 & 98.6 \\
\hline 19:30 & 1 & 0.2 & 412 & 98.8 \\
\hline 23:00 & 1 & 0.2 & 413 & 99.0 \\
\hline 24:00 & 4 & 1.0 & 417 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 41} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF4F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 54 & 13.3 & 54 & 13.3 \\
\hline 1:00 & 4 & 1.0 & 58 & 14.3 \\
\hline 2:00 & 3 & 0.7 & 61 & 15.0 \\
\hline 3:00 & 1 & 0.2 & 62 & 15.3 \\
\hline 4:00 & 2 & 0.5 & 64 & 15.8 \\
\hline 4:30 & 1 & 0.2 & 65 & 16.0 \\
\hline 5:00 & 11 & 2.7 & 76 & 18.7 \\
\hline 5:15 & 1 & 0.2 & 77 & 19.0 \\
\hline 5:30 & 2 & 0.5 & 79 & 19.5 \\
\hline 6:00 & 33 & 8.1 & 112 & 27.6 \\
\hline 6:30 & 13 & 3.2 & 125 & 30.8 \\
\hline 6:45 & 1 & 0.2 & 126 & 31.0 \\
\hline 7:00 & 58 & 14.3 & 184 & 45.3 \\
\hline 7:30 & 26 & 6.4 & 210 & 51.7 \\
\hline 7:45 & 1 & 0.2 & 211 & 52.0 \\
\hline 8:00 & 79 & 19.5 & 290 & 71.4 \\
\hline 8:15 & 2 & 0.5 & 292 & 71.9 \\
\hline 8:30 & 23 & 5.7 & 315 & 77.6 \\
\hline 9:00 & 40 & 9.9 & 355 & 87.4 \\
\hline 9:14 & 1 & 0.2 & 356 & 87.7 \\
\hline 9:30 & 4 & 1.0 & 360 & 88.7 \\
\hline 10:00 & 26 & 6.4 & 386 & 95.1 \\
\hline 11:00 & 8 & 2.0 & 394 & 97.0 \\
\hline 11:30 & 1 & 0.2 & 395 & 97.3 \\
\hline 12:00 & 2 & 0.5 & 397 & 97.8 \\
\hline 14:00 & 1 & 0.2 & 398 & 98.0 \\
\hline 15:00 & 2 & 0.5 & 400 & 98.5 \\
\hline 18:00 & 2 & 0.5 & 402 & 99.0 \\
\hline 18:30 & 1 & 0.2 & 403 & 99.3 \\
\hline 19:30 & 1 & 0.2 & 404 & 99.5 \\
\hline 24:00 & 2 & 0.5 & 406 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=52\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF5F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 223 & 55.5 & 223 & 55.5 \\
\hline 1:00 & 3 & 0.7 & 226 & 56.2 \\
\hline 2:00 & 1 & 0.2 & 227 & 56.5 \\
\hline 4:00 & 1 & 0.2 & 228 & 56.7 \\
\hline 4:30 & 1 & 0.2 & 229 & 57.0 \\
\hline 5:00 & 4 & 1.0 & 233 & 58.0 \\
\hline 5:30 & 1 & 0.2 & 234 & 58.2 \\
\hline 6:00 & 15 & 3.7 & 249 & 61.9 \\
\hline 6:30 & 3 & 0.7 & 252 & 62.7 \\
\hline 7:00 & 23 & 5.7 & 275 & 68.4 \\
\hline 7:30 & 2 & 0.5 & 277 & 68.9 \\
\hline 8:00 & 36 & 9.0 & 313 & 77.9 \\
\hline 8:30 & 6 & 1.5 & 319 & 79.4 \\
\hline 9:00 & 31 & 7.7 & 350 & 87.1 \\
\hline 9:14 & 1 & 0.2 & 351 & 87.3 \\
\hline 9:30 & 5 & 1.2 & 356 & 88.6 \\
\hline 10:00 & 24 & 6.0 & 380 & 94.5 \\
\hline 11:00 & 9 & 2.2 & 389 & 96.8 \\
\hline 12:00 & 3 & 0.7 & 392 & 97.5 \\
\hline 13:00 & 1 & 0.2 & 393 & 97.8 \\
\hline 14:00 & 1 & 0.2 & 394 & 98.0 \\
\hline 16:00 & 1 & 0.2 & 395 & 98.3 \\
\hline 18:00 & 1 & 0.2 & 396 & 98.5 \\
\hline 18:30 & 1 & 0.2 & 397 & 98.8 \\
\hline 19:30 & 1 & 0.2 & 398 & 99.0 \\
\hline 24:00 & 4 & 1.0 & 402 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=56\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF6F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 279 & 69.9 & 279 & 69.9 \\
\hline 1:00 & 3 & 0.8 & 282 & 70.7 \\
\hline 2:00 & 1 & 0.3 & 283 & 70.9 \\
\hline 4:00 & 1 & 0.3 & 284 & 71.2 \\
\hline 5:00 & 3 & 0.8 & 287 & 71.9 \\
\hline 5:30 & 1 & 0.3 & 288 & 72.2 \\
\hline 6:00 & 11 & 2.8 & 299 & 74.9 \\
\hline 6:30 & 2 & 0.5 & 301 & 75.4 \\
\hline 7:00 & 15 & 3.8 & 316 & 79.2 \\
\hline 8:00 & 13 & 3.3 & 329 & 82.5 \\
\hline 8:30 & 4 & 1.0 & 333 & 83.5 \\
\hline 9:00 & 16 & 4.0 & 349 & 87.5 \\
\hline 10:00 & 21 & 5.3 & 370 & 92.7 \\
\hline 11:00 & 15 & 3.8 & 385 & 96.5 \\
\hline 11:30 & 1 & 0.3 & 386 & 96.7 \\
\hline 12:00 & 4 & 1.0 & 390 & 97.7 \\
\hline 13:00 & 1 & 0.3 & 391 & 98.0 \\
\hline 14:00 & 1 & 0.3 & 392 & 98.2 \\
\hline 17:00 & 1 & 0.3 & 393 & 98.5 \\
\hline 18:00 & 1 & 0.3 & 394 & 98.7 \\
\hline 18:30 & 1 & 0.3 & 395 & 99.0 \\
\hline 19:30 & 1 & 0.3 & 396 & 99.2 \\
\hline 24:00 & 3 & 0.8 & 399 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 59} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF7F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 56 & 14.0 & 56 & 14.0 \\
\hline 1:00 & 4 & 1.0 & 60 & 15.0 \\
\hline 2:00 & 3 & 0.7 & 63 & 15.7 \\
\hline 3:00 & 1 & 0.2 & 64 & 16.0 \\
\hline 4:00 & 2 & 0.5 & 66 & 16.5 \\
\hline 4:30 & 1 & 0.2 & 67 & 16.7 \\
\hline 5:00 & 11 & 2.7 & 78 & 19.5 \\
\hline 5:15 & 1 & 0.2 & 79 & 19.7 \\
\hline 5:30 & 2 & 0.5 & 81 & 20.2 \\
\hline 6:00 & 33 & 8.2 & 114 & 28.4 \\
\hline 6:30 & 13 & 3.2 & 127 & 31.7 \\
\hline 6:45 & 1 & 0.2 & 128 & 31.9 \\
\hline 7:00 & 57 & 14.2 & 185 & 46.1 \\
\hline 7:30 & 27 & 6.7 & 212 & 52.9 \\
\hline 7:45 & 1 & 0.2 & 213 & 53.1 \\
\hline 8:00 & 75 & 18.7 & 288 & 71.8 \\
\hline 8:15 & 1 & 0.2 & 289 & 72.1 \\
\hline 8:30 & 24 & 6.0 & 313 & 78.1 \\
\hline 9:00 & 39 & 9.7 & 352 & 87.8 \\
\hline 9:14 & 1 & 0.2 & 353 & 88.0 \\
\hline 9:30 & 3 & 0.7 & 356 & 88.8 \\
\hline 10:00 & 25 & 6.2 & 381 & 95.0 \\
\hline 11:00 & 8 & 2.0 & 389 & 97.0 \\
\hline 11:30 & 1 & 0.2 & 390 & 97.3 \\
\hline 12:00 & 2 & 0.5 & 392 & 97.8 \\
\hline 14:00 & 1 & 0.2 & 393 & 98.0 \\
\hline 15:00 & 2 & 0.5 & 395 & 98.5 \\
\hline 18:00 & 1 & 0.2 & 396 & 98.8 \\
\hline 19:30 & 1 & 0.2 & 397 & 99.0 \\
\hline 20:00 & 1 & 0.2 & 398 & 99.3 \\
\hline 20:15 & 1 & 0.2 & 399 & 99.5 \\
\hline 24:00 & 2 & 0.5 & 401 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=57\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF8F & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 223 & 55.8 & 223 & 55.8 \\
\hline 1:00 & 3 & 0.8 & 226 & 56.5 \\
\hline 2:00 & 1 & 0.3 & 227 & 56.8 \\
\hline 4:00 & 1 & 0.3 & 228 & 57.0 \\
\hline 4:30 & 1 & 0.3 & 229 & 57.3 \\
\hline 5:00 & 4 & 1.0 & 233 & 58.3 \\
\hline 5:30 & 1 & 0.3 & 234 & 58.5 \\
\hline 6:00 & 14 & 3.5 & 248 & 62.0 \\
\hline 6:30 & 3 & 0.8 & 251 & 62.8 \\
\hline 7:00 & 22 & 5.5 & 273 & 68.3 \\
\hline 7:30 & 3 & 0.8 & 276 & 69.0 \\
\hline 8:00 & 36 & 9.0 & 312 & 78.0 \\
\hline 8:30 & 6 & 1.5 & 318 & 79.5 \\
\hline 9:00 & 30 & 7.5 & 348 & 87.0 \\
\hline 9:14 & 1 & 0.3 & 349 & 87.3 \\
\hline 9:30 & 5 & 1.3 & 354 & 88.5 \\
\hline 10:00 & 24 & 6.0 & 378 & 94.5 \\
\hline 11:00 & 9 & 2.3 & 387 & 96.8 \\
\hline 12:00 & 3 & 0.8 & 390 & 97.5 \\
\hline 13:00 & 1 & 0.3 & 391 & 97.8 \\
\hline 14:00 & 1 & 0.3 & 392 & 98.0 \\
\hline 16:00 & 1 & 0.3 & 393 & 98.3 \\
\hline 19:30 & 1 & 0.3 & 394 & 98.5 \\
\hline 20:00 & 1 & 0.3 & 395 & 98.8 \\
\hline 20:15 & 1 & 0.3 & 396 & 99.0 \\
\hline 24:00 & 4 & 1.0 & 400 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=58\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF9F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 279 & 69.9 & 279 & 69.9 \\
\hline 1:00 & 3 & 0.8 & 282 & 70.7 \\
\hline 2:00 & 1 & 0.3 & 283 & 70.9 \\
\hline 4:00 & 1 & 0.3 & 284 & 71.2 \\
\hline 5:00 & 3 & 0.8 & 287 & 71.9 \\
\hline 5:30 & 1 & 0.3 & 288 & 72.2 \\
\hline 6:00 & 11 & 2.8 & 299 & 74.9 \\
\hline 6:30 & 2 & 0.5 & 301 & 75.4 \\
\hline 7:00 & 15 & 3.8 & 316 & 79.2 \\
\hline 7:30 & 1 & 0.3 & 317 & 79.4 \\
\hline 8:00 & 12 & 3.0 & 329 & 82.5 \\
\hline 8:30 & 4 & 1.0 & 333 & 83.5 \\
\hline 9:00 & 16 & 4.0 & 349 & 87.5 \\
\hline 10:00 & 21 & 5.3 & 370 & 92.7 \\
\hline 11:00 & 15 & 3.8 & 385 & 96.5 \\
\hline 11:30 & 1 & 0.3 & 386 & 96.7 \\
\hline 12:00 & 4 & 1.0 & 390 & 97.7 \\
\hline 13:00 & 1 & 0.3 & 391 & 98.0 \\
\hline 14:00 & 1 & 0.3 & 392 & 98.2 \\
\hline 17:00 & 1 & 0.3 & 393 & 98.5 \\
\hline 19:30 & 1 & 0.3 & 394 & 98.7 \\
\hline 20:00 & 1 & 0.3 & 395 & 99.0 \\
\hline 20:15 & 1 & 0.3 & 396 & 99.2 \\
\hline 24:00 & 3 & 0.8 & 399 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=59\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF10F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 53 & 13.3 & 53 & 13.3 \\
\hline 1:00 & 4 & 1.0 & 57 & 14.3 \\
\hline 2:00 & 3 & 0.8 & 60 & 15.0 \\
\hline 3:00 & 1 & 0.3 & 61 & 15.3 \\
\hline 4:00 & 2 & 0.5 & 63 & 15.8 \\
\hline 4:30 & 1 & 0.3 & 64 & 16.0 \\
\hline 5:00 & 11 & 2.8 & 75 & 18.8 \\
\hline 5:15 & 1 & 0.3 & 76 & 19.0 \\
\hline 5:30 & 2 & 0.5 & 78 & 19.5 \\
\hline 6:00 & 32 & 8.0 & 110 & 27.5 \\
\hline 6:30 & 13 & 3.3 & 123 & 30.8 \\
\hline 6:45 & 1 & 0.3 & 124 & 31.0 \\
\hline 7:00 & 58 & 14.5 & 182 & 45.5 \\
\hline 7:30 & 25 & 6.3 & 207 & 51.8 \\
\hline 7:45 & 1 & 0.3 & 208 & 52.0 \\
\hline 8:00 & 80 & 20.0 & 288 & 72.0 \\
\hline 8:15 & 2 & 0.5 & 290 & 72.5 \\
\hline 8:30 & 22 & 5.5 & 312 & 78.0 \\
\hline 9:00 & 39 & 9.8 & 351 & 87.8 \\
\hline 9:14 & 1 & 0.3 & 352 & 88.0 \\
\hline 9:30 & 3 & 0.8 & 355 & 88.8 \\
\hline 10:00 & 25 & 6.3 & 380 & 95.0 \\
\hline 11:00 & 8 & 2.0 & 388 & 97.0 \\
\hline 11:30 & 1 & 0.3 & 389 & 97.3 \\
\hline 12:00 & 2 & 0.5 & 391 & 97.8 \\
\hline 14:00 & 1 & 0.3 & 392 & 98.0 \\
\hline 15:00 & 2 & 0.5 & 394 & 98.5 \\
\hline 18:00 & 2 & 0.5 & 396 & 99.0 \\
\hline 18:30 & 1 & 0.3 & 397 & 99.3 \\
\hline 19:30 & 1 & 0.3 & 398 & 99.5 \\
\hline 24:00 & 2 & 0.5 & 400 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=58\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF11F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 222 & 55.8 & 222 & 55.8 \\
\hline 1:00 & 3 & 0.8 & 225 & 56.5 \\
\hline 2:00 & 1 & 0.3 & 226 & 56.8 \\
\hline 4:00 & 1 & 0.3 & 227 & 57.0 \\
\hline 4:30 & 1 & 0.3 & 228 & 57.3 \\
\hline 5:00 & 3 & 0.8 & 231 & 58.0 \\
\hline 5:30 & 1 & 0.3 & 232 & 58.3 \\
\hline 6:00 & 15 & 3.8 & 247 & 62.1 \\
\hline 6:30 & 3 & 0.8 & 250 & 62.8 \\
\hline 7:00 & 22 & 5.5 & 272 & 68.3 \\
\hline 7:30 & 2 & 0.5 & 274 & 68.8 \\
\hline 8:00 & 37 & 9.3 & 311 & 78.1 \\
\hline 8:30 & 6 & 1.5 & 317 & 79.6 \\
\hline 9:00 & 29 & 7.3 & 346 & 86.9 \\
\hline 9:14 & 1 & 0.3 & 347 & 87.2 \\
\hline 9:30 & 5 & 1.3 & 352 & 88.4 \\
\hline 10:00 & 24 & 6.0 & 376 & 94.5 \\
\hline 11:00 & 9 & 2.3 & 385 & 96.7 \\
\hline 12:00 & 3 & 0.8 & 388 & 97.5 \\
\hline 13:00 & 1 & 0.3 & 389 & 97.7 \\
\hline 14:00 & 1 & 0.3 & 390 & 98.0 \\
\hline 16:00 & 1 & 0.3 & 391 & 98.2 \\
\hline 18:00 & 1 & 0.3 & 392 & 98.5 \\
\hline 18:30 & 1 & 0.3 & 393 & 98.7 \\
\hline 19:30 & 1 & 0.3 & 394 & 99.0 \\
\hline 24:00 & 4 & 1.0 & 398 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=60\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF12F & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 277 & 69.8 & 277 & 69.8 \\
\hline 1:00 & 3 & 0.8 & 280 & 70.5 \\
\hline 2:00 & 1 & 0.3 & 281 & 70.8 \\
\hline 4:00 & 1 & 0.3 & 282 & 71.0 \\
\hline 5:00 & 2 & 0.5 & 284 & 71.5 \\
\hline 5:30 & 1 & 0.3 & 285 & 71.8 \\
\hline 6:00 & 11 & 2.8 & 296 & 74.6 \\
\hline 6:30 & 2 & 0.5 & 298 & 75.1 \\
\hline 7:00 & 15 & 3.8 & 313 & 78.8 \\
\hline 8:00 & 13 & 3.3 & 326 & 82.1 \\
\hline 8:30 & 4 & 1.0 & 330 & 83.1 \\
\hline 9:00 & 17 & 4.3 & 347 & 87.4 \\
\hline 10:00 & 21 & 5.3 & 368 & 92.7 \\
\hline 11:00 & 15 & 3.8 & 383 & 96.5 \\
\hline 11:30 & 1 & 0.3 & 384 & 96.7 \\
\hline 12:00 & 4 & 1.0 & 388 & 97.7 \\
\hline 13:00 & 1 & 0.3 & 389 & 98.0 \\
\hline 14:00 & 1 & 0.3 & 390 & 98.2 \\
\hline 17:00 & 1 & 0.3 & 391 & 98.5 \\
\hline 18:00 & 1 & 0.3 & 392 & 98.7 \\
\hline 18:30 & 1 & 0.3 & 393 & 99.0 \\
\hline 19:30 & 1 & 0.3 & 394 & 99.2 \\
\hline 24:00 & 3 & 0.8 & 397 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 61} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LF 13F} & \multicolumn{4}{|c|}{light hours/from: Holiday} \\
\hline & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 321 & 77.9 & 321 & 77.9 \\
\hline 1:00 & 3 & 0.7 & 324 & 78.6 \\
\hline 3:00 & 1 & 0.2 & 325 & 78.9 \\
\hline 4:00 & 1 & 0.2 & 326 & 79.1 \\
\hline 5:00 & 2 & 0.5 & 328 & 79.6 \\
\hline 5:30 & 1 & 0.2 & 329 & 79.9 \\
\hline 6:00 & 11 & 2.7 & 340 & 82.5 \\
\hline 6:30 & 3 & 0.7 & 343 & 83.3 \\
\hline 7:00 & 11 & 2.7 & 354 & 85.9 \\
\hline 7:30 & 2 & 0.5 & 356 & 86.4 \\
\hline 8:00 & 9 & 2.2 & 365 & 88.6 \\
\hline 8:30 & 4 & 1.0 & 369 & 89.6 \\
\hline 9:00 & 13 & 3.2 & 382 & 92.7 \\
\hline 10:00 & 11 & 2.7 & 393 & 95.4 \\
\hline 11:00 & 8 & 1.9 & 401 & 97.3 \\
\hline 12:00 & 1 & 0.2 & 402 & 97.6 \\
\hline 13:00 & 1 & 0.2 & 403 & 97.8 \\
\hline 14:00 & 1 & 0.2 & 404 & 98.1 \\
\hline 15:00 & 1 & 0.2 & 405 & 98.3 \\
\hline 16:00 & 1 & 0.2 & 406 & 98.5 \\
\hline 18:00 & 1 & 0.2 & 407 & 98.8 \\
\hline 18:30 & 1 & 0.2 & 408 & 99.0 \\
\hline 19:30 & 1 & 0.2 & 409 & 99.3 \\
\hline 24:00 & 3 & 0.7 & 412 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=46\)} \\
\hline
\end{tabular}
light hours/am or pm: Dec Week
\begin{tabular}{|c|c|c|c|c|}
\hline LF1M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 425 & 97.0 & 425 & 97.0 \\
\hline D & 3 & 0.7 & 428 & 97.7 \\
\hline P & 10 & 2.3 & 438 & 100.0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline LF3M & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 405 & 96.4 & 405 & 96.4 \\
\hline D & 3 & 0.7 & 408 & 97.1 \\
\hline P & 12 & 2.9 & 420 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=38\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Apr Week } \\
& & & Cumulative & Cumulative \\
LF4M & Frequency & Percent & Frequency & Percent \\
\hdashline A & 396 & 97.1 & 396 & 97.1 \\
D & 3 & 0.7 & 399 & 97.8 \\
P & 2.2 & 408 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 5M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 393 & 97.0 & 393 & 97.0 \\
\hline D & 3 & 0.7 & 396 & 97.8 \\
\hline P & 9 & 2.2 & 405 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 53} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Apr Sun } \\
& & & Cumulative & Cumulative \\
LF6M & Frequency & Percent & Frequency & Percent \\
\hdashline A & 389 & 96.5 & 389 & 96.5 \\
D & 4 & 1.0 & 393 & 97.5 \\
P & 10 & 2.5 & 403 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Aug Week } \\
& & & Cumulative & Cumulative \\
LF7M & Frequency & Percent & Frequency & Percent \\
\hdashline A & 392 & 97.3 & 392 & 97.3 \\
D & 2 & 0.5 & 394 & 97.8 \\
P & 2.2 & 403 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 8M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 391 & 97.3 & 391 & 97.3 \\
\hline D & 2 & 0.5 & 393 & 97.8 \\
\hline P & 9 & 2.2 & 402 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=56\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF9M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 389 & 96.8 & 389 & 96.8 \\
\hline D & 3 & 0.7 & 392 & 97.5 \\
\hline P & 10 & 2.5 & 402 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=56\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline LF11M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 389 & 97.3 & 389 & 97.3 \\
\hline D & 2 & 0.5 & 391 & 97.8 \\
\hline P & 9 & 2.3 & 400 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF12M & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 387 & 96.8 & 387 & 96.8 \\
\hline D & 3 & 0.8 & 390 & 97.5 \\
\hline P & 10 & 2.5 & 400 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=58\)} \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Holiday } \\
LF13M & Frequency & Percent & Cumulative & Cumulative \\
Frequency & Percent \\
A & 404 & 96.2 & 404 & 96.2 \\
D & 8 & 1.9 & 412 & 98.1 \\
P & 8 & 1.9 & 420 & 100.0 \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF1T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 2 & 0.5 & 2 & 0.5 \\
\hline 1:00 & 5 & 1.1 & 7 & 1.6 \\
\hline 2:00 & 16 & 3.7 & 23 & 5.3 \\
\hline 3:00 & 1 & 0.2 & 24 & 5.5 \\
\hline 6:00 & 1 & 0.2 & 25 & 5.7 \\
\hline 6:30 & 1 & 0.2 & 26 & 6.0 \\
\hline 7:00 & 2 & 0.5 & 28 & 6.4 \\
\hline 7:30 & 1 & 0.2 & 29 & 6.7 \\
\hline 12:00 & 3 & 0.7 & 32 & 7.4 \\
\hline 12:30 & 1 & 0.2 & 33 & 7.6 \\
\hline 13:00 & 1 & 0.2 & 34 & 7.8 \\
\hline 13:30 & 2 & 0.5 & 36 & 8.3 \\
\hline 14:00 & 4 & 0.9 & 40 & 9.2 \\
\hline 14:30 & 1 & 0.2 & 41 & 9.4 \\
\hline 15:00 & 4 & 0.9 & 45 & 10.3 \\
\hline 15:30 & 5 & 1.1 & 50 & 11.5 \\
\hline 16:00 & 13 & 3.0 & 63 & 14.5 \\
\hline 16:30 & 18 & 4.1 & 81 & 18.6 \\
\hline 16:45 & 1 & 0.2 & 82 & 18.9 \\
\hline 17:00 & 87 & 20.0 & 169 & 38.9 \\
\hline 17:30 & 23 & 5.3 & 192 & 44.1 \\
\hline 17:45 & 1 & 0.2 & 193 & 44.4 \\
\hline 18:00 & 58 & 13.3 & 251 & 57.7 \\
\hline 18:30 & 9 & 2.1 & 260 & 59.8 \\
\hline 19:00 & 29 & 6.7 & 289 & 66.4 \\
\hline 19:30 & 1 & 0.2 & 290 & 66.7 \\
\hline 20:00 & 13 & 3.0 & 303 & 69.7 \\
\hline 20:30 & 2 & 0.5 & 305 & 70.1 \\
\hline 21:00 & 20 & 4.6 & 325 & 74.7 \\
\hline 21:30 & 1 & 0.2 & 326 & 74.9 \\
\hline 22:00 & 18 & 4.1 & 344 & 79.1 \\
\hline 22:30 & 1 & 0.2 & 345 & 79.3 \\
\hline 23:00 & 12 & 2.8 & 357 & 82.1 \\
\hline 23:30 & 2 & 0.5 & 359 & 82.5 \\
\hline 24:00 & 76 & 17.5 & 435 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF2T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 177 & 42.1 & 177 & 42.1 \\
\hline 1:00 & 7 & 1.7 & 184 & 43.8 \\
\hline 2:00 & 17 & 4.0 & 201 & 47.9 \\
\hline 3:00 & 2 & 0.5 & 203 & 48.3 \\
\hline 6:00 & 1 & 0.2 & 204 & 48.6 \\
\hline 7:00 & 2 & 0.5 & 206 & 49.0 \\
\hline 7:30 & 1 & 0.2 & 207 & 49.3 \\
\hline 9:00 & 1 & 0.2 & 208 & 49.5 \\
\hline 11:00 & 1 & 0.2 & 209 & 49.8 \\
\hline 12:00 & 14 & 3.3 & 223 & 53.1 \\
\hline 12:30 & 1 & 0.2 & 224 & 53.3 \\
\hline 13:00 & 6 & 1.4 & 230 & 54.8 \\
\hline 13:30 & 1 & 0.2 & 231 & 55.0 \\
\hline 14:00 & 10 & 2.4 & 241 & 57.4 \\
\hline 15:00 & 4 & 1.0 & 245 & 58.3 \\
\hline 15:30 & 2 & 0.5 & 247 & 58.8 \\
\hline 16:00 & 2 & 0.5 & 249 & 59.3 \\
\hline 16:30 & 1 & 0.2 & 250 & 59.5 \\
\hline 17:00 & 18 & 4.3 & 268 & 63.8 \\
\hline 17:30 & 3 & 0.7 & 271 & 64.5 \\
\hline 17:45 & 1 & 0.2 & 272 & 64.8 \\
\hline 18:00 & 26 & 6.2 & 298 & 71.0 \\
\hline 18:30 & 7 & 1.7 & 305 & 72.6 \\
\hline 19:00 & 15 & 3.6 & 320 & 76.2 \\
\hline 19:30 & 1 & 0.2 & 321 & 76.4 \\
\hline 20:00 & 9 & 2.1 & 330 & 78.6 \\
\hline 20:30 & 1 & 0.2 & 331 & 78.8 \\
\hline 21:00 & 12 & 2.9 & 343 & 81.7 \\
\hline 22:00 & 6 & 1.4 & 349 & 83.1 \\
\hline 22:30 & 1 & 0.2 & 350 & 83.3 \\
\hline 23:00 & 7 & 1.7 & 357 & 85.0 \\
\hline 23:30 & 2 & 0.5 & 359 & 85.5 \\
\hline 24:00 & 61 & 14.5 & 420 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=38\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF3T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 234 & 56.3 & 234 & 56.3 \\
\hline 1:00 & 4 & 1.0 & 238 & 57.2 \\
\hline 2:00 & 16 & 3.8 & 254 & 61.1 \\
\hline 3:00 & 1 & 0.2 & 255 & 61.3 \\
\hline 6:00 & 1 & 0.2 & 256 & 61.5 \\
\hline 7:00 & 2 & 0.5 & 258 & 62.0 \\
\hline 7:30 & 1 & 0.2 & 259 & 62.3 \\
\hline 12:00 & 9 & 2.2 & 268 & 64.4 \\
\hline 13:00 & 4 & 1.0 & 272 & 65.4 \\
\hline 13:30 & 1 & 0.2 & 273 & 65.6 \\
\hline 14:00 & 5 & 1.2 & 278 & 66.8 \\
\hline 15:00 & 3 & 0.7 & 281 & 67.5 \\
\hline 16:00 & 2 & 0.5 & 283 & 68.0 \\
\hline 17:00 & 16 & 3.8 & 299 & 71.9 \\
\hline 17:30 & 1 & 0.2 & 300 & 72.1 \\
\hline 18:00 & 17 & 4.1 & 317 & 76.2 \\
\hline 18:30 & 2 & 0.5 & 319 & 76.7 \\
\hline 19:00 & 12 & 2.9 & 331 & 79.6 \\
\hline 19:30 & 1 & 0.2 & 332 & 79.8 \\
\hline 20:00 & 4 & 1.0 & 336 & 80.8 \\
\hline 20:30 & 1 & 0.2 & 337 & 81.0 \\
\hline 21:00 & 7 & 1.7 & 344 & 82.7 \\
\hline 22:00 & 6 & 1.4 & 350 & 84.1 \\
\hline 22:30 & 1 & 0.2 & 351 & 84.4 \\
\hline 23:00 & 8 & 1.9 & 359 & 86.3 \\
\hline 23:30 & 2 & 0.5 & 361 & 86.8 \\
\hline 24:00 & 55 & 13.2 & 416 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 42} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 4T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 1 & 0.2 & 1 & 0.2 \\
\hline 1:00 & 4 & 1.0 & 5 & 1.2 \\
\hline 2:00 & 15 & 3.7 & 20 & 4.9 \\
\hline 3:00 & 1 & 0.2 & 21 & 5.2 \\
\hline 6:00 & 2 & 0.5 & 23 & 5.7 \\
\hline 6:30 & 1 & 0.2 & 24 & 5.9 \\
\hline 7:00 & 1 & 0.2 & 25 & 6.2 \\
\hline 7:30 & 1 & 0.2 & 26 & 6.4 \\
\hline 12:00 & 6 & 1.5 & 32 & 7.9 \\
\hline 12:30 & 1 & 0.2 & 33 & 8.1 \\
\hline 13:00 & 1 & 0.2 & 34 & 8.4 \\
\hline 13:30 & 2 & 0.5 & 36 & 8.9 \\
\hline 14:00 & 4 & 1.0 & 40 & 9.9 \\
\hline 14:30 & 1 & 0.2 & 41 & 10.1 \\
\hline 15:00 & 3 & 0.7 & 44 & 10.9 \\
\hline 15:30 & 5 & 1.2 & 49 & 12.1 \\
\hline 16:00 & 13 & 3.2 & 62 & 15.3 \\
\hline 16:30 & 17 & 4.2 & 79 & 19.5 \\
\hline 16:45 & 1 & 0.2 & 80 & 19.8 \\
\hline 17:00 & 81 & 20.0 & 161 & 39.8 \\
\hline 17:30 & 21 & 5.2 & 182 & 44.9 \\
\hline 17:45 & 1 & 0.2 & 183 & 45.2 \\
\hline 18:00 & 57 & 14.1 & 240 & 59.3 \\
\hline 18:30 & 8 & 2.0 & 248 & 61.2 \\
\hline 19:00 & 28 & 6.9 & 276 & 68.1 \\
\hline 19:30 & 1 & 0.2 & 277 & 68.4 \\
\hline 20:00 & 12 & 3.0 & 289 & 71.4 \\
\hline 20:30 & 2 & 0.5 & 291 & 71.9 \\
\hline 21:00 & 19 & 4.7 & 310 & 76.5 \\
\hline 21:30 & 2 & 0.5 & 312 & 77.0 \\
\hline 22:00 & 18 & 4.4 & 330 & 81.5 \\
\hline 22:30 & 1 & 0.2 & 331 & 81.7 \\
\hline 23:00 & 12 & 3.0 & 343 & 84.7 \\
\hline 23:30 & 1 & 0.2 & 344 & 84.9 \\
\hline 24:00 & 61 & 15.1 & 405 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=53\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF5T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 168 & 41.8 & 168 & 41.8 \\
\hline 1:00 & 7 & 1.7 & 175 & 43.5 \\
\hline 2:00 & 16 & 4.0 & 191 & 47.5 \\
\hline 3:00 & 2 & 0.5 & 193 & 48.0 \\
\hline 6:00 & 2 & 0.5 & 195 & 48.5 \\
\hline 7:00 & 1 & 0.2 & 196 & 48.8 \\
\hline 7:30 & 1 & 0.2 & 197 & 49.0 \\
\hline 9:00 & 1 & 0.2 & 198 & 49.3 \\
\hline 11:00 & 1 & 0.2 & 199 & 49.5 \\
\hline 12:00 & 14 & 3.5 & 213 & 53.0 \\
\hline 12:30 & 1 & 0.2 & 214 & 53.2 \\
\hline 13:00 & 5 & 1.2 & 219 & 54.5 \\
\hline 13:30 & 1 & 0.2 & 220 & 54.7 \\
\hline 14:00 & 9 & 2.2 & 229 & 57.0 \\
\hline 15:00 & 5 & 1.2 & 234 & 58.2 \\
\hline 15:30 & 2 & 0.5 & 236 & 58.7 \\
\hline 16:00 & 2 & 0.5 & 238 & 59.2 \\
\hline 16:30 & 1 & 0.2 & 239 & 59.5 \\
\hline 17:00 & 15 & 3.7 & 254 & 63.2 \\
\hline 17:30 & 3 & 0.7 & 257 & 63.9 \\
\hline 17:45 & 1 & 0.2 & 258 & 64.2 \\
\hline 18:00 & 26 & 6.5 & 284 & 70.6 \\
\hline 18:30 & 6 & 1.5 & 290 & 72.1 \\
\hline 19:00 & 13 & 3.2 & 303 & 75.4 \\
\hline 19:30 & 1 & 0.2 & 304 & 75.6 \\
\hline 20:00 & 8 & 2.0 & 312 & 77.6 \\
\hline 20:30 & 1 & 0.2 & 313 & 77.9 \\
\hline 21:00 & 13 & 3.2 & 326 & 81.1 \\
\hline 22:00 & 7 & 1.7 & 333 & 82.8 \\
\hline 22:30 & 1 & 0.2 & 334 & 83.1 \\
\hline 23:00 & 6 & 1.5 & 340 & 84.6 \\
\hline 23:30 & 1 & 0.2 & 341 & 84.8 \\
\hline 24:00 & 61 & 15.2 & 402 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=56\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF6T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 225 & 56.4 & 225 & 56.4 \\
\hline 1:00 & 4 & 1.0 & 229 & 57.4 \\
\hline 2:00 & 15 & 3.8 & 244 & 61.2 \\
\hline 3:00 & 1 & 0.3 & 245 & 61.4 \\
\hline 6:00 & 2 & 0.5 & 247 & 61.9 \\
\hline 7:00 & 1 & 0.3 & 248 & 62.2 \\
\hline 7:30 & 1 & 0.3 & 249 & 62.4 \\
\hline 12:00 & 8 & 2.0 & 257 & 64.4 \\
\hline 13:00 & 4 & 1.0 & 261 & 65.4 \\
\hline 13:30 & 1 & 0.3 & 262 & 65.7 \\
\hline 14:00 & 5 & 1.3 & 267 & 66.9 \\
\hline 15:00 & 3 & 0.8 & 270 & 67.7 \\
\hline 16:00 & 2 & 0.5 & 272 & 68.2 \\
\hline 17:00 & 11 & 2.8 & 283 & 70.9 \\
\hline 17:30 & 1 & 0.3 & 284 & 71.2 \\
\hline 18:00 & 17 & 4.3 & 301 & 75.4 \\
\hline 18:30 & 2 & 0.5 & 303 & 75.9 \\
\hline 19:00 & 10 & 2.5 & 313 & 78.4 \\
\hline 19:30 & 1 & 0.3 & 314 & 78.7 \\
\hline 20:00 & 4 & 1.0 & 318 & 79.7 \\
\hline 20:30 & 1 & 0.3 & 319 & 79.9 \\
\hline 21:00 & 7 & 1.8 & 326 & 81.7 \\
\hline 22:00 & 8 & 2.0 & 334 & 83.7 \\
\hline 22:30 & 1 & 0.3 & 335 & 84.0 \\
\hline 23:00 & 7 & 1.8 & 342 & 85.7 \\
\hline 23:30 & 2 & 0.5 & 344 & 86.2 \\
\hline 24:00 & 55 & 13.8 & 399 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=59\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF7T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 4 & 1.0 & 4 & 1.0 \\
\hline 1:00 & 4 & 1.0 & 8 & 2.0 \\
\hline 2:00 & 16 & 4.0 & 24 & 6.0 \\
\hline 3:00 & 1 & 0.2 & 25 & 6.2 \\
\hline 6:00 & 1 & 0.2 & 26 & 6.5 \\
\hline 6:15 & 1 & 0.2 & 27 & 6.7 \\
\hline 6:30 & 1 & 0.2 & 28 & 7.0 \\
\hline 7:00 & 1 & 0.2 & 29 & 7.2 \\
\hline 7:30 & 1 & 0.2 & 30 & 7.5 \\
\hline 12:00 & 6 & 1.5 & 36 & 9.0 \\
\hline 12:30 & 2 & 0.5 & 38 & 9.5 \\
\hline 13:00 & 1 & 0.2 & 39 & 9.7 \\
\hline 13:30 & 3 & 0.7 & 42 & 10.5 \\
\hline 14:00 & 4 & 1.0 & 46 & 11.5 \\
\hline 15:00 & 4 & 1.0 & 50 & 12.5 \\
\hline 15:30 & 5 & 1.2 & 55 & 13.7 \\
\hline 16:00 & 13 & 3.2 & 68 & 17.0 \\
\hline 16:30 & 14 & 3.5 & 82 & 20.4 \\
\hline 16:45 & 1 & 0.2 & 83 & 20.7 \\
\hline 17:00 & 77 & 19.2 & 160 & 39.9 \\
\hline 17:30 & 22 & 5.5 & 182 & 45.4 \\
\hline 17:45 & 1 & 0.2 & 183 & 45.6 \\
\hline 18:00 & 56 & 14.0 & 239 & 59.6 \\
\hline 18:30 & 8 & 2.0 & 247 & 61.6 \\
\hline 19:00 & 28 & 7.0 & 275 & 68.6 \\
\hline 19:30 & 2 & 0.5 & 277 & 69.1 \\
\hline 20:00 & 12 & 3.0 & 289 & 72.1 \\
\hline 20:30 & 2 & 0.5 & 291 & 72.6 \\
\hline 21:00 & 16 & 4.0 & 307 & 76.6 \\
\hline 21:30 & 2 & 0.5 & 309 & 77.1 \\
\hline 22:00 & 18 & 4.5 & 327 & 81.5 \\
\hline 22:30 & 1 & 0.2 & 328 & 81.8 \\
\hline 23:00 & 12 & 3.0 & 340 & 84.8 \\
\hline 23:30 & 1 & 0.2 & 341 & 85.0 \\
\hline 24:00 & 60 & 15.0 & 401 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF8T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 167 & 41.8 & 167 & 41.8 \\
\hline 1:00 & 7 & 1.8 & 174 & 43.5 \\
\hline 2:00 & 17 & 4.3 & 191 & 47.8 \\
\hline 3:00 & 2 & 0.5 & 193 & 48.3 \\
\hline 6:00 & 1 & 0.3 & 194 & 48.5 \\
\hline 6:15 & 1 & 0.3 & 195 & 48.8 \\
\hline 7:00 & 1 & 0.3 & 196 & 49.0 \\
\hline 7:30 & 1 & 0.3 & 197 & 49.3 \\
\hline 9:00 & 1 & 0.3 & 198 & 49.5 \\
\hline 11:00 & 1 & 0.3 & 199 & 49.8 \\
\hline 12:00 & 14 & 3.5 & 213 & 53.3 \\
\hline 12:30 & 1 & 0.3 & 214 & 53.5 \\
\hline 13:00 & 5 & 1.3 & 219 & 54.8 \\
\hline 13:30 & 1 & 0.3 & 220 & 55.0 \\
\hline 14:00 & 9 & 2.3 & 229 & 57.3 \\
\hline 15:00 & 4 & 1.0 & 233 & 58.3 \\
\hline 15:30 & 2 & 0.5 & 235 & 58.8 \\
\hline 16:00 & 2 & 0.5 & 237 & 59.3 \\
\hline 16:30 & 1 & 0.3 & 238 & 59.5 \\
\hline 17:00 & 14 & 3.5 & 252 & 63.0 \\
\hline 17:30 & 3 & 0.8 & 255 & 63.8 \\
\hline 17:45 & 1 & 0.3 & 256 & 64.0 \\
\hline 18:00 & 25 & 6.3 & 281 & 70.3 \\
\hline 18:30 & 6 & 1.5 & 287 & 71.8 \\
\hline 19:00 & 13 & 3.3 & 300 & 75.0 \\
\hline 19:30 & 2 & 0.5 & 302 & 75.5 \\
\hline 20:00 & 8 & 2.0 & 310 & 77.5 \\
\hline 20:30 & 1 & 0.3 & 311 & 77.8 \\
\hline 21:00 & 11 & 2.8 & 322 & 80.5 \\
\hline 22:00 & 7 & 1.8 & 329 & 82.3 \\
\hline 22:30 & 1 & 0.3 & 330 & 82.5 \\
\hline 23:00 & 7 & 1.8 & 337 & 84.3 \\
\hline 23:30 & 1 & 0.3 & 338 & 84.5 \\
\hline 24:00 & 62 & 15.5 & 400 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=58\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF9T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 224 & 56.1 & 224 & 56.1 \\
\hline 1:00 & 4 & 1.0 & 228 & 57.1 \\
\hline 2:00 & 16 & 4.0 & 244 & 61.2 \\
\hline 3:00 & 1 & 0.3 & 245 & 61.4 \\
\hline 6:00 & 1 & 0.3 & 246 & 61.7 \\
\hline 6:15 & 1 & 0.3 & 247 & 61.9 \\
\hline 7:00 & 1 & 0.3 & 248 & 62.2 \\
\hline 7:30 & 1 & 0.3 & 249 & 62.4 \\
\hline 12:00 & 8 & 2.0 & 257 & 64.4 \\
\hline 13:00 & 4 & 1.0 & 261 & 65.4 \\
\hline 13:30 & 1 & 0.3 & 262 & 65.7 \\
\hline 14:00 & 5 & 1.3 & 267 & 66.9 \\
\hline 15:00 & 3 & 0.8 & 270 & 67.7 \\
\hline 16:00 & 2 & 0.5 & 272 & 68.2 \\
\hline 17:00 & 11 & 2.8 & 283 & 70.9 \\
\hline 17:30 & 1 & 0.3 & 284 & 71.2 \\
\hline 18:00 & 16 & 4.0 & 300 & 75.2 \\
\hline 18:30 & 2 & 0.5 & 302 & 75.7 \\
\hline 19:00 & 10 & 2.5 & 312 & 78.2 \\
\hline 19:30 & 2 & 0.5 & 314 & 78.7 \\
\hline 20:00 & 4 & 1.0 & 318 & 79.7 \\
\hline 20:30 & 1 & 0.3 & 319 & 79.9 \\
\hline 21:00 & 6 & 1.5 & 325 & 81.5 \\
\hline 22:00 & 7 & 1.8 & 332 & 83.2 \\
\hline 22:30 & 1 & 0.3 & 333 & 83.5 \\
\hline 23:00 & 8 & 2.0 & 341 & 85.5 \\
\hline 23:30 & 2 & 0.5 & 343 & 86.0 \\
\hline 24:00 & 56 & 14.0 & 399 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=59\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF10T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 1 & 0.3 & 1 & 0.3 \\
\hline 1:00 & 4 & 1.0 & 5 & 1.3 \\
\hline 2:00 & 15 & 3.8 & 20 & 5.0 \\
\hline 3:00 & 1 & 0.3 & 21 & 5.3 \\
\hline 6:00 & 2 & 0.5 & 23 & 5.8 \\
\hline 6:30 & 1 & 0.3 & 24 & 6.0 \\
\hline 7:00 & 1 & 0.3 & 25 & 6.3 \\
\hline 7:30 & 1 & 0.3 & 26 & 6.5 \\
\hline 12:00 & 6 & 1.5 & 32 & 8.0 \\
\hline 12:30 & 1 & 0.3 & 33 & 8.3 \\
\hline 13:00 & 1 & 0.3 & 34 & 8.5 \\
\hline 13:30 & 2 & 0.5 & 36 & 9.0 \\
\hline 14:00 & 4 & 1.0 & 40 & 10.0 \\
\hline 14:30 & 1 & 0.3 & 41 & 10.3 \\
\hline 15:00 & 3 & 0.8 & 44 & 11.0 \\
\hline 15:30 & 5 & 1.3 & 49 & 12.3 \\
\hline 16:00 & 13 & 3.3 & 62 & 15.5 \\
\hline 16:30 & 17 & 4.3 & 79 & 19.8 \\
\hline 16:45 & 1 & 0.3 & 80 & 20.0 \\
\hline 17:00 & 82 & 20.5 & 162 & 40.5 \\
\hline 17:30 & 20 & 5.0 & 182 & 45.5 \\
\hline 17:45 & 1 & 0.3 & 183 & 45.8 \\
\hline 18:00 & 54 & 13.5 & 237 & 59.3 \\
\hline 18:30 & 8 & 2.0 & 245 & 61.3 \\
\hline 19:00 & 28 & 7.0 & 273 & 68.3 \\
\hline 19:30 & 1 & 0.3 & 274 & 68.5 \\
\hline 20:00 & 12 & 3.0 & 286 & 71.5 \\
\hline 20:30 & 2 & 0.5 & 288 & 72.0 \\
\hline 21:00 & 17 & 4.3 & 305 & 76.3 \\
\hline 21:30 & 2 & 0.5 & 307 & 76.8 \\
\hline 22:00 & 19 & 4.8 & 326 & 81.5 \\
\hline 22:30 & 1 & 0.3 & 327 & 81.8 \\
\hline 23:00 & 12 & 3.0 & 339 & 84.8 \\
\hline 23:30 & 1 & 0.3 & 340 & 85.0 \\
\hline 24:00 & 60 & 15.0 & 400 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=58\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF11T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 167 & 42.0 & 167 & 42.0 \\
\hline 1:00 & 7 & 1.8 & 174 & 43.7 \\
\hline 2:00 & 16 & 4.0 & 190 & 47.7 \\
\hline 3:00 & 2 & 0.5 & 192 & 48.2 \\
\hline 6:00 & 2 & 0.5 & 194 & 48.7 \\
\hline 7:00 & 1 & 0.3 & 195 & 49.0 \\
\hline 7:30 & 1 & 0.3 & 196 & 49.2 \\
\hline 9:00 & 1 & 0.3 & 197 & 49.5 \\
\hline 11:00 & 1 & 0.3 & 198 & 49.7 \\
\hline 12:00 & 13 & 3.3 & 211 & 53.0 \\
\hline 12:30 & 1 & 0.3 & 212 & 53.3 \\
\hline 13:00 & 5 & 1.3 & 217 & 54.5 \\
\hline 13:30 & 1 & 0.3 & 218 & 54.8 \\
\hline 14:00 & 9 & 2.3 & 227 & 57.0 \\
\hline 15:00 & 4 & 1.0 & 231 & 58.0 \\
\hline 15:30 & 2 & 0.5 & 233 & 58.5 \\
\hline 16:00 & 2 & 0.5 & 235 & 59.0 \\
\hline 16:30 & 1 & 0.3 & 236 & 59.3 \\
\hline 17:00 & 14 & 3.5 & 250 & 62.8 \\
\hline 17:30 & 3 & 0.8 & 253 & 63.6 \\
\hline 17:45 & 1 & 0.3 & 254 & 63.8 \\
\hline 18:00 & 26 & 6.5 & 280 & 70.4 \\
\hline 18:30 & 6 & 1.5 & 286 & 71.9 \\
\hline 19:00 & 15 & 3.8 & 301 & 75.6 \\
\hline 19:30 & 1 & 0.3 & 302 & 75.9 \\
\hline 20:00 & 8 & 2.0 & 310 & 77.9 \\
\hline 20:30 & 1 & 0.3 & 311 & 78.1 \\
\hline 21:00 & 10 & 2.5 & 321 & 80.7 \\
\hline 22:00 & 7 & 1.8 & 328 & 82.4 \\
\hline 22:30 & 1 & 0.3 & 329 & 82.7 \\
\hline 23:00 & 7 & 1.8 & 336 & 84.4 \\
\hline 23:30 & 1 & 0.3 & 337 & 84.7 \\
\hline 24:00 & 61 & 15.3 & 398 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=60\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF12T & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0:00 & 222 & 55.9 & 222 & 55.9 \\
\hline 1:00 & 4 & 1.0 & 226 & 56.9 \\
\hline 2:00 & 15 & 3.8 & 241 & 60.7 \\
\hline 3:00 & 1 & 0.3 & 242 & 61.0 \\
\hline 6:00 & 2 & 0.5 & 244 & 61.5 \\
\hline 7:00 & 1 & 0.3 & 245 & 61.7 \\
\hline 7:30 & 1 & 0.3 & 246 & 62.0 \\
\hline 12:00 & 8 & 2.0 & 254 & 64.0 \\
\hline 13:00 & 4 & 1.0 & 258 & 65.0 \\
\hline 13:30 & 1 & 0.3 & 259 & 65.2 \\
\hline 14:00 & 5 & 1.3 & 264 & 66.5 \\
\hline 15:00 & 3 & 0.8 & 267 & 67.3 \\
\hline 16:00 & 2 & 0.5 & 269 & 67.8 \\
\hline 17:00 & 12 & 3.0 & 281 & 70.8 \\
\hline 17:30 & 1 & 0.3 & 282 & 71.0 \\
\hline 18:00 & 17 & 4.3 & 299 & 75.3 \\
\hline 18:30 & 2 & 0.5 & 301 & 75.8 \\
\hline 19:00 & 11 & 2.8 & 312 & 78.6 \\
\hline 19:30 & 1 & 0.3 & 313 & 78.8 \\
\hline 20:00 & 4 & 1.0 & 317 & 79.8 \\
\hline 20:30 & 1 & 0.3 & 318 & 80.1 \\
\hline 21:00 & 5 & 1.3 & 323 & 81.4 \\
\hline 22:00 & 7 & 1.8 & 330 & 83.1 \\
\hline 22:30 & 1 & 0.3 & 331 & 83.4 \\
\hline 23:00 & 8 & 2.0 & 339 & 85.4 \\
\hline 23:30 & 2 & 0.5 & 341 & 85.9 \\
\hline 24:00 & 56 & 14.1 & 397 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 61} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF13T & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0:00 & 258 & 62.6 & 258 & 62.6 \\
\hline 1:00 & 5 & 1.2 & 263 & 63.8 \\
\hline 2:00 & 11 & 2.7 & 274 & 66.5 \\
\hline 3:00 & 1 & 0.2 & 275 & 66.7 \\
\hline 6:00 & 2 & 0.5 & 277 & 67.2 \\
\hline 7:00 & 1 & 0.2 & 278 & 67.5 \\
\hline 7:30 & 1 & 0.2 & 279 & 67.7 \\
\hline 12:00 & 5 & 1.2 & 284 & 68.9 \\
\hline 13:00 & 2 & 0.5 & 286 & 69.4 \\
\hline 13:30 & 2 & 0.5 & 288 & 69.9 \\
\hline 14:00 & 3 & 0.7 & 291 & 70.6 \\
\hline 15:30 & 2 & 0.5 & 293 & 71.1 \\
\hline 16:00 & 1 & 0.2 & 294 & 71.4 \\
\hline 17:00 & 8 & 1.9 & 302 & 73.3 \\
\hline 17:30 & 1 & 0.2 & 303 & 73.5 \\
\hline 18:00 & 9 & 2.2 & 312 & 75.7 \\
\hline 19:00 & 10 & 2.4 & 322 & 78.2 \\
\hline 20:00 & 3 & 0.7 & 325 & 78.9 \\
\hline 20:30 & 1 & 0.2 & 326 & 79.1 \\
\hline 21:00 & 5 & 1.2 & 331 & 80.3 \\
\hline 22:00 & 4 & 1.0 & 335 & 81.3 \\
\hline 22:30 & 1 & 0.2 & 336 & 81.6 \\
\hline 23:00 & 9 & 2.2 & 345 & 83.7 \\
\hline 23:30 & 1 & 0.2 & 346 & 84.0 \\
\hline 24:00 & 66 & 16.0 & 412 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=46\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF1N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 40 & 9.1 & 40 & 9.1 \\
\hline D & 3 & 0.7 & 43 & 9.8 \\
\hline P & 395 & 90.2 & 438 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF2N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 46 & 10.9 & 46 & 10.9 \\
\hline D & 3 & 0.7 & 49 & 11.6 \\
\hline P & 374 & 88.4 & 423 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ light hours/am or pm: Dec Sun } \\
& & Cumulative & Cumulative \\
LF3N & Frequency & Percent & Frequency & Percent \\
A & 35 & 8.4 & 35 & 8.4 \\
A & 3 & 0.7 & 38 & 9.1 \\
D & 381 & 90.9 & 419 & 100.0 \\
F & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 4N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 39 & 9.6 & 39 & 9.6 \\
\hline D & 3 & 0.7 & 42 & 10.3 \\
\hline P & 366 & 89.7 & 408 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=50\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF5N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 45 & 11.1 & 45 & 11.1 \\
\hline D & 3 & 0.7 & 48 & 11.9 \\
\hline P & 357 & 88.1 & 405 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 6N & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline A & 33 & 8.2 & 33 & 8.2 \\
\hline D & 4 & 1.0 & 37 & 9.2 \\
\hline P & 366 & 90.8 & 403 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=55\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF7N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 40 & 9.9 & 40 & 9.9 \\
\hline D & 2 & 0.5 & 42 & 10.4 \\
\hline P & 361 & 89.6 & 403 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 55} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF8N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 46 & 11.4 & 46 & 11.4 \\
\hline D & 2 & 0.5 & 48 & 11.9 \\
\hline P & 354 & 88.1 & 402 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=56\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF 9N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 34 & 8.5 & 34 & 8.5 \\
\hline D & 3 & 0.7 & 37 & 9.2 \\
\hline P & 365 & 90.8 & 402 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=56\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LF10N} & \multicolumn{4}{|l|}{light hours/am or pm: Oct Week} \\
\hline & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 39 & 9.7 & 39 & 9.7 \\
\hline D & 2 & 0.5 & 41 & 10.2 \\
\hline P & 361 & 89.8 & 402 & 100.0 \\
\hline & Fre & uency Mis & ing \(=56\) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline LF12N & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline A & 33 & 8.3 & 33 & 8.3 \\
\hline D & 3 & 0.8 & 36 & 9.0 \\
\hline P & 364 & 91.0 & 400 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=58\)} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline LW2 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 67 & 17.4 & 67 & 17.4 \\
\hline 1 & 17 & 4.4 & 84 & 21.8 \\
\hline 2 & 12 & 3.1 & 96 & 24.9 \\
\hline 3 & 4 & 1.0 & 100 & 25.9 \\
\hline 5 & 21 & 5.4 & 121 & 31.3 \\
\hline 8 & 2 & 0.5 & 123 & 31.9 \\
\hline 10 & 33 & 8.5 & 156 & 40.4 \\
\hline 15 & 3 & 0.8 & 159 & 41.2 \\
\hline 20 & 8 & 2.1 & 167 & 43.3 \\
\hline 25 & 7 & 1.8 & 174 & 45.1 \\
\hline 30 & 7 & 1.8 & 181 & 46.9 \\
\hline 33 & 4 & 1.0 & 185 & 47.9 \\
\hline 35 & 1 & 0.3 & 186 & 48.2 \\
\hline 40 & 4 & 1.0 & 190 & 49.2 \\
\hline 50 & 20 & 5.2 & 210 & 54.4 \\
\hline 60 & 9 & 2.3 & 219 & 56.7 \\
\hline 65 & 1 & 0.3 & 220 & 57.0 \\
\hline 66 & 1 & 0.3 & 221 & 57.3 \\
\hline 70 & 3 & 0.8 & 224 & 58.0 \\
\hline 75 & 10 & 2.6 & 234 & 60.6 \\
\hline 77 & 1 & 0.3 & 235 & 60.9 \\
\hline 80 & 11 & 2.8 & 246 & 63.7 \\
\hline 85 & 5 & 1.3 & 251 & 65.0 \\
\hline 90 & 12 & 3.1 & 263 & 68.1 \\
\hline 95 & 5 & 1.3 & 268 & 69.4 \\
\hline 98 & 1 & 0.3 & 269 & 69.7 \\
\hline 99 & 2 & 0.5 & 271 & 70.2 \\
\hline 100 & 115 & 29.8 & 386 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=72\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW3 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 98 & 26.2 & 98 & 26.2 \\
\hline 1 & 21 & 5.6 & 119 & 31.8 \\
\hline 2 & 15 & 4.0 & 134 & 35.8 \\
\hline 3 & 4 & 1.1 & 138 & 36.9 \\
\hline 5 & 28 & 7.5 & 166 & 44.4 \\
\hline 8 & 2 & 0.5 & 168 & 44.9 \\
\hline 10 & 34 & 9.1 & 202 & 54.0 \\
\hline 15 & 2 & 0.5 & 204 & 54.5 \\
\hline 20 & 7 & 1.9 & 211 & 56.4 \\
\hline 25 & 5 & 1.3 & 216 & 57.8 \\
\hline 30 & 7 & 1.9 & 223 & 59.6 \\
\hline 33 & 3 & 0.8 & 226 & 60.4 \\
\hline 35 & 2 & 0.5 & 228 & 61.0 \\
\hline 40 & 4 & 1.1 & 232 & 62.0 \\
\hline 50 & 13 & 3.5 & 245 & 65.5 \\
\hline 60 & 9 & 2.4 & 254 & 67.9 \\
\hline 65 & 1 & 0.3 & 255 & 68.2 \\
\hline 66 & 1 & 0.3 & 256 & 68.4 \\
\hline 70 & 4 & 1.1 & 260 & 69.5 \\
\hline 75 & 10 & 2.7 & 270 & 72.2 \\
\hline 80 & 8 & 2.1 & 278 & 74.3 \\
\hline 85 & 3 & 0.8 & 281 & 75.1 \\
\hline 90 & 11 & 2.9 & 292 & 78.1 \\
\hline 95 & 3 & 0.8 & 295 & 78.9 \\
\hline 98 & 1 & 0.3 & 296 & 79.1 \\
\hline 100 & 78 & 20.9 & 374 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW4 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 2 & 0.5 & 2 & 0.5 \\
\hline 1 & 2 & 0.5 & 4 & 1.0 \\
\hline 2 & 1 & 0.3 & 5 & 1.3 \\
\hline 5 & 1 & 0.3 & 6 & 1.6 \\
\hline 8 & 1 & 0.3 & 7 & 1.8 \\
\hline 10 & 1 & 0.3 & 8 & 2.1 \\
\hline 20 & 4 & 1.0 & 12 & 3.1 \\
\hline 25 & 4 & 1.0 & 16 & 4.2 \\
\hline 30 & 3 & 0.8 & 19 & 4.9 \\
\hline 33 & 3 & 0.8 & 22 & 5.7 \\
\hline 35 & 2 & 0.5 & 24 & 6.3 \\
\hline 40 & 3 & 0.8 & 27 & 7.0 \\
\hline 45 & 1 & 0.3 & 28 & 7.3 \\
\hline 50 & 21 & 5.5 & 49 & 12.8 \\
\hline 60 & 9 & 2.3 & 58 & 15.1 \\
\hline 65 & 2 & 0.5 & 60 & 15.6 \\
\hline 66 & 3 & 0.8 & 63 & 16.4 \\
\hline 67 & 1 & 0.3 & 64 & 16.7 \\
\hline 70 & 5 & 1.3 & 69 & 18.0 \\
\hline 75 & 25 & 6.5 & 94 & 24.5 \\
\hline 80 & 21 & 5.5 & 115 & 29.9 \\
\hline 82.390625 & 1 & 0.3 & 116 & 30.2 \\
\hline 85 & 4 & 1.0 & 120 & 31.3 \\
\hline 90 & 27 & 7.0 & 147 & 38.3 \\
\hline 95 & 15 & 3.9 & 162 & 42.2 \\
\hline 98 & 4 & 1.0 & 166 & 43.2 \\
\hline 100 & 218 & 56.8 & 384 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=74\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW5 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 63 & 17.2 & 63 & 17.2 \\
\hline 1 & 16 & 4.4 & 79 & 21.6 \\
\hline 2 & 13 & 3.6 & 92 & 25.1 \\
\hline 3 & 3 & 0.8 & 95 & 26.0 \\
\hline 5 & 21 & 5.7 & 116 & 31.7 \\
\hline 8 & 2 & 0.5 & 118 & 32.2 \\
\hline 10 & 30 & 8.2 & 148 & 40.4 \\
\hline 15 & 4 & 1.1 & 152 & 41.5 \\
\hline 20 & 8 & 2.2 & 160 & 43.7 \\
\hline 25 & 7 & 1.9 & 167 & 45.6 \\
\hline 30 & 8 & 2.2 & 175 & 47.8 \\
\hline 33 & 4 & 1.1 & 179 & 48.9 \\
\hline 35 & 1 & 0.3 & 180 & 49.2 \\
\hline 40 & 5 & 1.4 & 185 & 50.5 \\
\hline 50 & 21 & 5.7 & 206 & 56.3 \\
\hline 60 & 8 & 2.2 & 214 & 58.5 \\
\hline 66 & 1 & 0.3 & 215 & 58.7 \\
\hline 70 & 3 & 0.8 & 218 & 59.6 \\
\hline 75 & 10 & 2.7 & 228 & 62.3 \\
\hline 80 & 11 & 3.0 & 239 & 65.3 \\
\hline 85 & 3 & 0.8 & 242 & 66.1 \\
\hline 90 & 11 & 3.0 & 253 & 69.1 \\
\hline 95 & 4 & 1.1 & 257 & 70.2 \\
\hline 98 & 1 & 0.3 & 258 & 70.5 \\
\hline 100 & 108 & 29.5 & 366 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=92\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW6 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 93 & 26.0 & 93 & 26.0 \\
\hline 1 & 21 & 5.9 & 114 & 31.8 \\
\hline 2 & 15 & 4.2 & 129 & 36.0 \\
\hline 3 & 3 & 0.8 & 132 & 36.9 \\
\hline 5 & 27 & 7.5 & 159 & 44.4 \\
\hline 8 & 2 & 0.6 & 161 & 45.0 \\
\hline 10 & 34 & 9.5 & 195 & 54.5 \\
\hline 15 & 3 & 0.8 & 198 & 55.3 \\
\hline 20 & 7 & 2.0 & 205 & 57.3 \\
\hline 25 & 6 & 1.7 & 211 & 58.9 \\
\hline 30 & 7 & 2.0 & 218 & 60.9 \\
\hline 33 & 3 & 0.8 & 221 & 61.7 \\
\hline 35 & 2 & 0.6 & 223 & 62.3 \\
\hline 40 & 4 & 1.1 & 227 & 63.4 \\
\hline 50 & 13 & 3.6 & 240 & 67.0 \\
\hline 60 & 8 & 2.2 & 248 & 69.3 \\
\hline 66 & 1 & 0.3 & 249 & 69.6 \\
\hline 70 & 4 & 1.1 & 253 & 70.7 \\
\hline 75 & 9 & 2.5 & 262 & 73.2 \\
\hline 80 & 8 & 2.2 & 270 & 75.4 \\
\hline 85 & 2 & 0.6 & 272 & 76.0 \\
\hline 90 & 10 & 2.8 & 282 & 78.8 \\
\hline 95 & 2 & 0.6 & 284 & 79.3 \\
\hline 98 & 1 & 0.3 & 285 & 79.6 \\
\hline 100 & 73 & 20.4 & 358 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Aug Week
\end{tabular}
\begin{tabular}{rrrrr} 
& light hours/percent on: Aug Sat
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW9 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 90 & 25.2 & 90 & 25.2 \\
\hline 1 & 20 & 5.6 & 110 & 30.8 \\
\hline 2 & 16 & 4.5 & 126 & 35.3 \\
\hline 3 & 3 & 0.8 & 129 & 36.1 \\
\hline 5 & 28 & 7.8 & 157 & 44.0 \\
\hline 8 & 2 & 0.6 & 159 & 44.5 \\
\hline 10 & 34 & 9.5 & 193 & 54.1 \\
\hline 15 & 4 & 1.1 & 197 & 55.2 \\
\hline 20 & 7 & 2.0 & 204 & 57.1 \\
\hline 25 & 6 & 1.7 & 210 & 58.8 \\
\hline 30 & 7 & 2.0 & 217 & 60.8 \\
\hline 33 & 3 & 0.8 & 220 & 61.6 \\
\hline 35 & 2 & 0.6 & 222 & 62.2 \\
\hline 40 & 4 & 1.1 & 226 & 63.3 \\
\hline 50 & 13 & 3.6 & 239 & 66.9 \\
\hline 60 & 8 & 2.2 & 247 & 69.2 \\
\hline 66 & 1 & 0.3 & 248 & 69.5 \\
\hline 70 & 3 & 0.8 & 251 & 70.3 \\
\hline 75 & 9 & 2.5 & 260 & 72.8 \\
\hline 80 & 8 & 2.2 & 268 & 75.1 \\
\hline 85 & 3 & 0.8 & 271 & 75.9 \\
\hline 90 & 10 & 2.8 & 281 & 78.7 \\
\hline 95 & 2 & 0.6 & 283 & 79.3 \\
\hline 98 & 1 & 0.3 & 284 & 79.6 \\
\hline 100 & 73 & 20.4 & 357 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW10 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 2 & 0.5 & 2 & 0.5 \\
\hline 1 & 1 & 0.3 & 3 & 0.8 \\
\hline 2 & 2 & 0.5 & 5 & 1.3 \\
\hline 5 & 1 & 0.3 & 6 & 1.6 \\
\hline 8 & 1 & 0.3 & 7 & 1.8 \\
\hline 10 & 1 & 0.3 & 8 & 2.1 \\
\hline 20 & 4 & 1.1 & 12 & 3.2 \\
\hline 25 & 3 & 0.8 & 15 & 4.0 \\
\hline 30 & 4 & 1.1 & 19 & 5.0 \\
\hline 33 & 3 & 0.8 & 22 & 5.8 \\
\hline 35 & 1 & 0.3 & 23 & 6.1 \\
\hline 40 & 2 & 0.5 & 25 & 6.6 \\
\hline 45 & 1 & 0.3 & 26 & 6.9 \\
\hline 50 & 20 & 5.3 & 46 & 12.1 \\
\hline 60 & 7 & 1.8 & 53 & 14.0 \\
\hline 65 & 2 & 0.5 & 55 & 14.5 \\
\hline 66 & 3 & 0.8 & 58 & 15.3 \\
\hline 67 & 1 & 0.3 & 59 & 15.6 \\
\hline 70 & 5 & 1.3 & 64 & 16.9 \\
\hline 75 & 27 & 7.1 & 91 & 24.0 \\
\hline 80 & 21 & 5.5 & 112 & 29.6 \\
\hline 82.390625 & 1 & 0.3 & 113 & 29.8 \\
\hline 85 & 5 & 1.3 & 118 & 31.1 \\
\hline 90 & 28 & 7.4 & 146 & 38.5 \\
\hline 95 & 16 & 4.2 & 162 & 42.7 \\
\hline 98 & 4 & 1.1 & 166 & 43.8 \\
\hline 100 & 213 & 56.2 & 379 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=79\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW11 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 64 & 17.7 & 64 & 17.7 \\
\hline 1 & 14 & 3.9 & 78 & 21.6 \\
\hline 2 & 13 & 3.6 & 91 & 25.2 \\
\hline 3 & 3 & 0.8 & 94 & 26.0 \\
\hline 5 & 21 & 5.8 & 115 & 31.9 \\
\hline 8 & 2 & 0.6 & 117 & 32.4 \\
\hline 10 & 30 & 8.3 & 147 & 40.7 \\
\hline 15 & 5 & 1.4 & 152 & 42.1 \\
\hline 20 & 8 & 2.2 & 160 & 44.3 \\
\hline 25 & 6 & 1.7 & 166 & 46.0 \\
\hline 30 & 7 & 1.9 & 173 & 47.9 \\
\hline 33 & 4 & 1.1 & 177 & 49.0 \\
\hline 35 & 1 & 0.3 & 178 & 49.3 \\
\hline 40 & 4 & 1.1 & 182 & 50.4 \\
\hline 50 & 21 & 5.8 & 203 & 56.2 \\
\hline 60 & 7 & 1.9 & 210 & 58.2 \\
\hline 65 & 1 & 0.3 & 211 & 58.4 \\
\hline 66 & 1 & 0.3 & 212 & 58.7 \\
\hline 70 & 2 & 0.6 & 214 & 59.3 \\
\hline 75 & 11 & 3.0 & 225 & 62.3 \\
\hline 80 & 11 & 3.0 & 236 & 65.4 \\
\hline 85 & 4 & 1.1 & 240 & 66.5 \\
\hline 90 & 11 & 3.0 & 251 & 69.5 \\
\hline 95 & 4 & 1.1 & 255 & 70.6 \\
\hline 98 & 1 & 0.3 & 256 & 70.9 \\
\hline 100 & 105 & 29.1 & 361 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW12 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 90 & 25.2 & 90 & 25.2 \\
\hline 1 & 20 & 5.6 & 110 & 30.8 \\
\hline 2 & 16 & 4.5 & 126 & 35.3 \\
\hline 3 & 3 & 0.8 & 129 & 36.1 \\
\hline 5 & 28 & 7.8 & 157 & 44.0 \\
\hline 8 & 2 & 0.6 & 159 & 44.5 \\
\hline 10 & 33 & 9.2 & 192 & 53.8 \\
\hline 15 & 4 & 1.1 & 196 & 54.9 \\
\hline 20 & 8 & 2.2 & 204 & 57.1 \\
\hline 25 & 5 & 1.4 & 209 & 58.5 \\
\hline 30 & 7 & 2.0 & 216 & 60.5 \\
\hline 33 & 3 & 0.8 & 219 & 61.3 \\
\hline 35 & 2 & 0.6 & 221 & 61.9 \\
\hline 40 & 3 & 0.8 & 224 & 62.7 \\
\hline 50 & 13 & 3.6 & 237 & 66.4 \\
\hline 60 & 8 & 2.2 & 245 & 68.6 \\
\hline 65 & 1 & 0.3 & 246 & 68.9 \\
\hline 66 & 1 & 0.3 & 247 & 69.2 \\
\hline 70 & 3 & 0.8 & 250 & 70.0 \\
\hline 75 & 11 & 3.1 & 261 & 73.1 \\
\hline 80 & 8 & 2.2 & 269 & 75.4 \\
\hline 85 & 2 & 0.6 & 271 & 75.9 \\
\hline 90 & 10 & 2.8 & 281 & 78.7 \\
\hline 95 & 2 & 0.6 & 283 & 79.3 \\
\hline 98 & 1 & 0.3 & 284 & 79.6 \\
\hline 100 & 73 & 20.4 & 357 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LW13 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 139 & 34.3 & 139 & 34.3 \\
\hline 1 & 30 & 7.4 & 169 & 41.7 \\
\hline 2 & 16 & 4.0 & 185 & 45.7 \\
\hline 3 & 4 & 1.0 & 189 & 46.7 \\
\hline 5 & 32 & 7.9 & 221 & 54.6 \\
\hline 8 & 1 & 0.2 & 222 & 54.8 \\
\hline 10 & 37 & 9.1 & 259 & 64.0 \\
\hline 15 & 5 & 1.2 & 264 & 65.2 \\
\hline 20 & 9 & 2.2 & 273 & 67.4 \\
\hline 25 & 4 & 1.0 & 277 & 68.4 \\
\hline 30 & 5 & 1.2 & 282 & 69.6 \\
\hline 33 & 3 & 0.7 & 285 & 70.4 \\
\hline 40 & 2 & 0.5 & 287 & 70.9 \\
\hline 50 & 11 & 2.7 & 298 & 73.6 \\
\hline 60 & 7 & 1.7 & 305 & 75.3 \\
\hline 66 & 1 & 0.2 & 306 & 75.6 \\
\hline 70 & 2 & 0.5 & 308 & 76.0 \\
\hline 75 & 10 & 2.5 & 318 & 78.5 \\
\hline 80 & 4 & 1.0 & 322 & 79.5 \\
\hline 85 & 1 & 0.2 & 323 & 79.8 \\
\hline 87 & 1 & 0.2 & 324 & 80.0 \\
\hline 90 & 6 & 1.5 & 330 & 81.5 \\
\hline 95 & 2 & 0.5 & 332 & 82.0 \\
\hline 98 & 1 & 0.2 & 333 & 82.2 \\
\hline 100 & 72 & 17.8 & 405 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 53} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LF015 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 27 & 6.0 & 27 & 6.0 \\
\hline 0.5 & 1 & 0.2 & 28 & 6.2 \\
\hline 1 & 2 & 0.4 & 30 & 6.7 \\
\hline 3 & 1 & 0.2 & 31 & 6.9 \\
\hline 5 & 2 & 0.4 & 33 & 7.3 \\
\hline 10 & 7 & 1.6 & 40 & 8.9 \\
\hline 12 & 1 & 0.2 & 41 & 9.1 \\
\hline 15 & 3 & 0.7 & 44 & 9.8 \\
\hline 20 & 7 & 1.6 & 51 & 11.4 \\
\hline 25 & 4 & 0.9 & 55 & 12.2 \\
\hline 30 & 4 & 0.9 & 59 & 13.1 \\
\hline 33 & 3 & 0.7 & 62 & 13.8 \\
\hline 35 & 3 & 0.7 & 65 & 14.5 \\
\hline 40 & 10 & 2.2 & 75 & 16.7 \\
\hline 50 & 17 & 3.8 & 92 & 20.5 \\
\hline 60 & 7 & 1.6 & 99 & 22.0 \\
\hline 66 & 1 & 0.2 & 100 & 22.3 \\
\hline 70 & 7 & 1.6 & 107 & 23.8 \\
\hline 75 & 16 & 3.6 & 123 & 27.4 \\
\hline 80 & 23 & 5.1 & 146 & 32.5 \\
\hline 85 & 3 & 0.7 & 149 & 33.2 \\
\hline 90 & 32 & 7.1 & 181 & 40.3 \\
\hline 95 & 19 & 4.2 & 200 & 44.5 \\
\hline 98 & 3 & 0.7 & 203 & 45.2 \\
\hline 99 & 5 & 1.1 & 208 & 46.3 \\
\hline 100 & 219 & 48.8 & 427 & 95.1 \\
\hline 888 & 1 & 0.2 & 428 & 95.3 \\
\hline 999 & 21 & 4.7 & 449 & 100.0 \\
\hline
\end{tabular}

\begin{tabular}{rrrrr} 
& Average age existing & fixtures & \\
SR100 & Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{rrrr} 
Culative \\
Percent
\end{tabular}
\begin{tabular}{lcccc} 
Any instld equip been removed \\
& & \\
LP010 & Frequency & Percent & Frequency & Fumulative \\
Percent
\end{tabular}

\begin{tabular}{ccccc} 
year of new equip removed \\
LP021 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 1993 & 2 & 40.0 & 2 & 40.0 \\
1994 & 1 & 20.0 & 3 & 60.0 \\
1995 & 2 & 40.0 & 5 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LP 025 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing \(=458\)

Program Nonparticipants Page I-128 1994 PG\&E Lighting Evaluation
\begin{tabular}{|c|c|c|c|c|}
\hline LP026 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing \(=458\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Removed/4' T-8} \\
\hline LP 030 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 7 & 87.5 & 7 & 87.5 \\
\hline 1 & 1 & 12.5 & 8 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=450\)} \\
\hline
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Lemoved/8' \(\mathrm{T}-8\) \\
LP031 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 9 & 100.0 & 9
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/4' ES Fluor \\
LP032 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 0 & 9 & 100.0 & 9
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/8' ES Fluor \\
LP033 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 0 & 9 & 100.0 & 9
\end{tabular}
\begin{tabular}{cccc} 
Removed/4' \(\mathrm{T}-12\) \\
LP034 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 9 & 100.0 & 9
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/8' \(\mathrm{T}-12\) \\
LP035 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 9 & 100.0 & 9
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Removed/Incandescent} \\
\hline LP 036 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 8 & 80.0 & 8 & 80.0 \\
\hline 1 & 1 & 10.0 & 9 & 90.0 \\
\hline 35 & 1 & 10.0 & 10 & 100.0 \\
\hline & Frequen & Missing & \(=448\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LP 037} & \multicolumn{3}{|l|}{Removed/Compact Fluor} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline \multirow[t]{3}{*}{0} & 9 & 100.0 & 9 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=449\)} & \\
\hline & \multicolumn{3}{|l|}{Removed/High pres sodium} & \\
\hline LP 038 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 8 & 88.9 & 8 & 88.9 \\
\hline \multirow[t]{2}{*}{4} & 1 & 11.1 & 9 & 100.0 \\
\hline & \multicolumn{3}{|l|}{Frequency Missing \(=449\)} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LP 040} & \multicolumn{3}{|c|}{Removed/Mercury Vpr} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 0 & 10 & 100.0 & 10 & 100.0 \\
\hline & Frequen & y Missing & \(=448\) & \\
\hline
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Removed/Quartz \\
LP041 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative & Percent
\end{tabular}

\begin{tabular}{cccc}
\(c\) \\
Removed/Elec Ballasts \\
LP043 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
0 & 10 & 100.0 & 10
\end{tabular}
\begin{tabular}{cccc} 
Removed/Magnetic Ballasts \\
LP044 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Frequency & Missing \(=448\)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{LP 070} & \multicolumn{3}{|c|}{Replcd w/4' T-8} & \multirow[b]{2}{*}{Cumulative Percent} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline 0 & 10 & 90.9 & 10 & 90.9 \\
\hline 1 & 1 & 9.1 & 11 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=447\)} \\
\hline \multicolumn{5}{|c|}{Replcd w/8' T-8} \\
\hline LP 071 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{0} & 12 & 100.0 & 12 & 100.0 \\
\hline & \multicolumn{4}{|l|}{Frequency Missing \(=446\)} \\
\hline
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/4' ES Fluor \\
LP072 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 12 & 100.0 & 12
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/8' ES Fluor \\
LP073 Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/4' & T-12 \\
LP074 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\hdashline 0 & 12 & 100.0 & 12
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/8' \(\mathrm{T}-12\) \\
LP075 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LP 076 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 0 & 10 & 83.3 & 10 & 83.3 \\
\hline 1 & 1 & 8.3 & 11 & 91.7 \\
\hline 20 & 1 & 8.3 & 12 & 100.0 \\
\hline
\end{tabular}

\begin{tabular}{ccccc} 
Replcd w/High pres sodium \\
LP078 & Frequency & Percent & Cumulative & Frequency
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/Metal Halide \\
LP079 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent
\end{tabular}
\begin{tabular}{ccccc} 
Replcd w/Mercury Vpr \\
LP080 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 12 & 100.0 & 12 & 100.0
\end{tabular}
\begin{tabular}{cccc}
\(c\) \\
Replcd w/Quartz \\
LP081 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 12 & 100.0 & 12
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/Reflctrs Delmp \\
LP082 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
0 & 12 & 100.0 & 12
\end{tabular}
\begin{tabular}{cccc} 
Replcd w/Elec Ballasts \\
LP083 & Frequency & Percent & Cumulative \\
Frequency & Cumulative & Percent \\
0 & 11 & 91.7 & 11
\end{tabular}
\begin{tabular}{ccccc} 
Replcd w/Magnetic Ballasts \\
LP084 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
0 & 12 & 100.0 & 12 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline LP 085 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline 0 & 12 & 100.0 & 12 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing = 446} \\
\hline
\end{tabular}


\begin{tabular}{cccc} 
Year change outdoor lights \\
OL031 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cormulative & Percent
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CE010} & \multicolumn{3}{|c|}{Cooling type} & \multirow[b]{2}{*}{Cumulative Percent} \\
\hline & Frequency & Percent & Cumulative Frequency & \\
\hline No AC & 130 & 29.7 & 130 & 29.7 \\
\hline Centrl Plant & 107 & 24.5 & 237 & 54.2 \\
\hline Sml Pack Sys & 130 & 29.7 & 367 & 84.0 \\
\hline Wall/Wndo Unit & 26 & 5.9 & 393 & 89.9 \\
\hline Heat Pump & 12 & 2.7 & 405 & 92.7 \\
\hline Other & 25 & 5.7 & 430 & 98.4 \\
\hline Evap Cooler & 1 & 0.2 & 431 & 98.6 \\
\hline Swamp Cooler & 6 & 1.4 & 437 & 100.0 \\
\hline & Frequenc & Missing & 21 & \\
\hline
\end{tabular}
\begin{tabular}{rl} 
OBS & CEOII \\
& \\
1 & AIR CONDITIONER/HEATERS \\
2 & FORCED AIR \\
3 & 0 \\
4 & REFRIGERATION UNIT \\
5 & ANTIQUE \\
6 & SWAMP COOLER \\
7 & COOLERS \\
8 & SWAMP COOLER \\
9 & REFRIGIRATION UNIT \\
10 & WATER COOLER \\
11 & SWAMP COOLERS \\
12 & FORCED AIR \\
13 & FORCED AIR COMPRESSOR \\
14 & CENTRAL AIR COOLING \\
15 & MULTIPLE/FAN/AC/WINDOW COMBO \\
16 & 20 TON FORCED AIR \\
17 & REFRIGERATION \\
18 & SWAMP COOLER \\
19 & SWAMP COOLER 421 \\
20 & \(40=\) HVAC \\
21 & FORCED AIR \\
22 & FAN \\
23 & HEATER COOLERS \\
24 & CHILLER \\
25 & COMBO OF ALL OF THE ABOVE \\
26 & SWAMP COOLER \\
27 & CEILING FANS \\
28 & EVAPORATIVE COOLER \\
29 & WATER COOLER \\
30 & ROOF UNITS \\
31 & HVAC \\
32 & COMMERCIAL UNITS \\
33 & WEATHER CARRIERS \\
34 & CHILLING TOWER \\
35 & CONGLOMERATION \\
36 & 2 PIPE SYSTEM \\
37 & 4 PIPE SYSTEM \\
38 & COMPRESSOR UNIT \\
39 & 6 ROOF UNITS \\
& \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
& Cooling primary fuel \\
& & & Cumulative & Cumulative \\
CE015 & Frequency & Percent & Frequency & Percent
\end{tabular}

\begin{tabular}{lcccc} 
Cooling operated/all year \\
& & \\
CE059 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/Jan} & \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 147 & 97.4 & 147 & 97.4 \\
\hline Yes & & 4 & 2.6 & 151 & 100.0 \\
\hline & & Frequen & Missing & \(=307\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Cool & operat & /Feb & \\
\hline & CE0 61 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 147 & 98.7 & 147 & 98.7 \\
\hline Yes & & 2 & 1.3 & 149 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=309\)

\begin{tabular}{lcccc}
\multicolumn{4}{c}{ Cooling operated/Apr } \\
& & \\
CE063 & Frequency & Percent & Frequency & Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/May} & \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 57 & 32.8 & 57 & 32.8 \\
\hline Yes & & 117 & 67.2 & 174 & 100.0 \\
\hline & & Frequen & Missing & \(=284\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/Jun} & \\
\hline & & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 24 & 13.0 & 24 & 13.0 \\
\hline Yes & & 160 & 87.0 & 184 & 100.0 \\
\hline & & Frequen & y Missing & \(=274\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Cooling operated/Jul} & \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 12 & 6.5 & 12 & 6.5 \\
\hline Yes & & 172 & 93.5 & 184 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=274\)} \\
\hline
\end{tabular}

Cooling operated/Aug
\begin{tabular}{lcccr}
\multicolumn{4}{c}{ Cooling operated/Aug } \\
& & & Cumulative & Cumulative \\
CE067 & Frequency & Percent & Frequency & Percent \\
No & 9 & 4.8 & 9 & 4.8 \\
Yes & 177 & 95.2 & 186 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Cooling operated/Sep} \\
\hline & CE068 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 22 & 12.1 & 22 & 12.1 \\
\hline Yes & & 160 & 87.9 & 182 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=276\)} \\
\hline
\end{tabular}


Frequency Missing \(=286\)
\begin{tabular}{lcccr}
\multicolumn{3}{c}{ Cooling operated/Nov } \\
& & & Cumulative & Cumulative \\
CE070 & Frequency & Percent & Frequency & Percent
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CE080} & \multicolumn{4}{|l|}{Added/replaced/removed cooling} \\
\hline & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No chnge & 378 & 85.3 & 378 & 85.3 \\
\hline Added & 25 & 5.6 & 403 & 91.0 \\
\hline Replaced & 32 & 7.2 & 435 & 98.2 \\
\hline Added/Replced & 7 & 1.6 & 442 & 99.8 \\
\hline Removed & 1 & 0.2 & 443 & 100.0 \\
\hline & Frequen & Missing & \(=15\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CE090 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline FEB1992 & 1 & 3.7 & 1 & 3.7 \\
\hline MAR1992 & 1 & 3.7 & 2 & 7.4 \\
\hline MAY1992 & 2 & 7.4 & 4 & 14.8 \\
\hline OCT1992 & 1 & 3.7 & 5 & 18.5 \\
\hline APR1993 & 1 & 3.7 & 6 & 22.2 \\
\hline JUN1993 & 2 & 7.4 & 8 & 29.6 \\
\hline JUL1993 & 1 & 3.7 & 9 & 33.3 \\
\hline DEC1993 & 1 & 3.7 & 10 & 37.0 \\
\hline FEB1994 & 1 & 3.7 & 11 & 40.7 \\
\hline JUL1994 & 1 & 3.7 & 12 & 44.4 \\
\hline OCT1994 & 2 & 7.4 & 14 & 51.9 \\
\hline NOV1994 & 2 & 7.4 & 16 & 59.3 \\
\hline DEC1994 & 1 & 3.7 & 17 & 63.0 \\
\hline FEB1995 & 1 & 3.7 & 18 & 66.7 \\
\hline APR1995 & 1 & 3.7 & 19 & 70.4 \\
\hline MAY1995 & 2 & 7.4 & 21 & 77.8 \\
\hline JUN1995 & 2 & 7.4 & 23 & 85.2 \\
\hline JUL1995 & 4 & 14.8 & 27 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=431\)} \\
\hline
\end{tabular}
\begin{tabular}{ccccr} 
Year cooling changes \\
CE091 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
\cline { 2 - 2 } & 10 & 28.6 & 10 & 28.6 \\
1993 & 8 & 22.9 & 18 & 51.4 \\
1994 & 11 & 31.4 & 29 & 82.9 \\
1995 & 6 & 17.1 & 35 & 100.0
\end{tabular}
\begin{tabular}{lcccc} 
Old cooling fuel type \\
CE110 & Frequency & Percent & Cumulative & Frequency
\end{tabular}\(\quad\)\begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}


Frequency Missing \(=395\)
\begin{tabular}{rl} 
OBS & CE121 \\
& \\
1 & BOTH \\
2 & ELECTRICITY AND GA \\
3 & ELEC \& GAS
\end{tabular}

Type of main heating
\begin{tabular}{|c|c|c|c|c|}
\hline HE015 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline Cntrl elec fur & 39 & 9.4 & 39 & 9.4 \\
\hline Cntrl HP & 35 & 8.4 & 74 & 17.8 \\
\hline Cntrl Gas fur & 156 & 37.6 & 230 & 55.4 \\
\hline Gas boiler & 34 & 8.2 & 264 & 63.6 \\
\hline Elec boiler & 1 & 0.2 & 265 & 63.9 \\
\hline Oil boiler/fur & 2 & 0.5 & 267 & 64.3 \\
\hline Elec strip heat & 2 & 0.5 & 269 & 64.8 \\
\hline Basebrd elec hea & 5 & 1.2 & 274 & 66.0 \\
\hline Rm/Wal AC w/stri & 11 & 2.7 & 285 & 68.7 \\
\hline Perm non-elec ht & 4 & 1.0 & 289 & 69.6 \\
\hline whlhs wl/flr ele & 8 & 1.9 & 297 & 71.6 \\
\hline whlhs wl/flr gas & 12 & 2.9 & 309 & 74.5 \\
\hline Port elec & 11 & 2.7 & 320 & 77.1 \\
\hline Wood/Coal stove & 2 & 0.5 & 322 & 77.6 \\
\hline Propane heat & 4 & 1.0 & 326 & 78.6 \\
\hline Other & 35 & 8.4 & 361 & 87.0 \\
\hline None & 44 & 10.6 & 405 & 97.6 \\
\hline Packaged Systems & 10 & 2.4 & 415 & 100.0 \\
\hline
\end{tabular}
```

OBS HE016
STEAM HEAT
INDUSTRIAL BLOWERS
FORCED AIR THRU ROOFTOP UNITS
PACKAGED HEATING SYSTEMS ELECTRIC
PACKAGED SYSTEMS
PACKAGED UNITS
BOILER
SAME AS AC
FORST AIR
GAS WALL UNIT
RADIANT HEATERS
ROOF MOUNTED UNIT
GAS RANGE
GAS BLOW HEATER
GAS FORCED AIR
FORCED AIR-GAS
SAME SYSTEM AS COOLING
PACKAGED SYSTEM
SAME SYSTEM AS COOLING
SAME AS COOLING
ATLAS TAKES CARE OF IT
FORCED AIR SAME AS AC
NOT SURE BUT ELECTRIC
SAME AS ABOVE
FORCED AIR HEAT; GAS BLOWER
GAS - INFRARED, CATALYTIC, CERAMIC
4 FORCED AIR 20 TN
GAS FURNACE WITH SPACE HEATERS
ELECTRIC SPACE HEATER
COMBINATION AIR COND./HEATING UNITS!
FORSTARE
VARIOUS; EACH CLASSROOM HAS SOMETHING.
AIR BLOWERS
SAME AS AIR
DON'T KNOW, BUT IT'S GAS SOMETHING
DUAL PACK / GAS HEATERS
SPACE HEATER
FORCED AIR GAS
GAS POWERED
DUAL ROOFTOP UNITS
HVAC
CENTRAL FURNACE
PACKAGED UNITS
PACKAGED SYSTEMS
PACKAGED SYSTEMS
PACKAGED SYSTEMS
INDIVIDUAL ELECTRIC ROOM HEATERS
INDIVIDUAL ROOM HEATING
4 PIPE SYSTEM
ELECTRIC HEATER
PORTABLE GAS HEATERS.
Program Nonparticipants Page I-150 1994 PG\&E Lighting Evaluation

```
\begin{tabular}{|c|c|c|c|c|}
\hline HE020 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline
\end{tabular}

Frequency Missing \(=458\)


Frequency Missing \(=458\)

Heating operated/all year
\begin{tabular}{|c|c|c|c|c|c|}
\hline & HE059 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 164 & 56.2 & 164 & 56.2 \\
\hline Yes & & 128 & 43.8 & 292 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=166\)
\begin{tabular}{lcccr}
\multicolumn{3}{c}{ Heating operated/Jan } \\
& & & Cumulative & Cumulative \\
HE060 & Frequency & Percent & Frequency & Percent \\
No & 19 & 6.9 & 19 & 6.9 \\
Yes & 256 & 93.1 & 275 & 100.0
\end{tabular}
\begin{tabular}{lcccc}
\multicolumn{4}{c}{ Heating operated/Feb } \\
& & & Cumulative & Cumulative \\
HE061 & Frequency & Percent & Frequency & Percent \\
No & 34 & 12.7 & 34 & 12.7 \\
Yes & 233 & 87.3 & 267 & 100.0
\end{tabular}
\begin{tabular}{lcccr}
\multicolumn{4}{c}{ Heating operated/Mar } \\
& & & Cumulative & Cumulative \\
HE062 & Frequency & Percent & Frequency & Percent \\
No & 90 & 34.2 & 90 & 34.2 \\
Yes & 173 & 65.8 & 263 & 100.0
\end{tabular}

\begin{tabular}{lcccr}
\multicolumn{3}{c}{ Heating operated/May } \\
& & & Cumulative & Cumulative \\
HE064 & Frequency & Percent & Frequency & Percent \\
No & 230 & 92.0 & 230 & 92.0 \\
Yes & 20 & 8.0 & 250 & 100.0
\end{tabular}
\begin{tabular}{lccc}
\multicolumn{4}{c}{ Heating operated/Jun } \\
& & \\
HE065 & Frequency & Percent & Frequency
\end{tabular}\(\quad\)\begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & HE0 66 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 246 & 99.6 & 246 & 99.6 \\
\hline Yes & & 1 & 0.4 & 247 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 211} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & HE0 67 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 246 & 99.2 & 246 & 99.2 \\
\hline Yes & & 2 & 0.8 & 248 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=210\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Heating operated/Sep} & \\
\hline & & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 237 & 94.4 & 237 & 94.4 \\
\hline Yes & & 14 & 5.6 & 251 & 100.0 \\
\hline & & Frequen & Missing & \(=207\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & HE0 69 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline No & & 166 & 65.1 & 166 & 65.1 \\
\hline Yes & & 89 & 34.9 & 255 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing \(=203\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & HE071 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 18 & 6.6 & 18 & 6.6 \\
\hline Yes & & 255 & 93.4 & 273 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=185\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & HE0 72 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 189 & 96.9 & 189 & 96.9 \\
\hline Yes & & 6 & 3.1 & 195 & 100.0 \\
\hline
\end{tabular}

Frequency Missing \(=263\)

Program Nonparticipants Page I-154 1994 PG\&E Lighting Evaluation

\begin{tabular}{lcccc}
\multicolumn{4}{c}{ Added/replaced/removed heating sys } \\
& HE080 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} \\
Cumulative \\
Percent
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline HE091 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1992 & 7 & 24.1 & 7 & 24.1 \\
\hline 1993 & 7 & 24.1 & 14 & 48.3 \\
\hline 1994 & 12 & 41.4 & 26 & 89.7 \\
\hline 1995 & 3 & 10.3 & 29 & 100.0 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{OE014C} & \multirow[b]{2}{*}{Frequency} & \multirow[t]{2}{*}{nged mfg e
Percent} & \multirow[t]{2}{*}{\begin{tabular}{l}
quip \\
Cumulative \\
Frequency
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Cumulative \\
Percent
\end{tabular}} \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=458\)} \\
\hline \multicolumn{5}{|c|}{Changed computers} \\
\hline OE014D & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1 & 5 & 100.0 & 5 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=453\)} \\
\hline \multicolumn{5}{|c|}{Changed other1} \\
\hline OE015 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & 10 & 33.3 & 10 & 33.3 \\
\hline Yes & 20 & 66.7 & 30 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=428\)} \\
\hline
\end{tabular}

\begin{tabular}{cccc}
\(c\) \\
Changed refused \\
OE019 Frequency & Percent & Cumulative & Cumulative \\
No & Frequency & Percent
\end{tabular}

Changed dont know
\begin{tabular}{lcccc} 
& & & OE011 & Frequency
\end{tabular} Percent \begin{tabular}{c} 
Cumbative \\
Frequency
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OE020 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline DEC1994 & 1 & 100.0 & 1 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=457\)} \\
\hline \multicolumn{5}{|c|}{Year changed H2O heat} \\
\hline OE021 & Frequency & Percent & \begin{tabular}{l}
Cumulative \\
Frequency
\end{tabular} & Cumulative Percent \\
\hline 1992 & 1 & 33.3 & 1 & 33.3 \\
\hline 1994 & 2 & 66.7 & 3 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=455\)} \\
\hline
\end{tabular}


Old H2O heat fuel type



Frequency Missing \(=455\)
Month/Year changed cooking equip
OE060 Frequency Percent Frequency Prylative Percent

Frequency Missing \(=458\)

Program Nonparticipants Page I-162 1994 PG\&E Lighting Evaluation
\begin{tabular}{cccc} 
Year changed cooking equip \\
OE061 & Frequency & Percent \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
1994 & 1 & 100.0 & 1
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline OE100 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline MAR1994 & 1 & 33.3 & 1 & 33.3 \\
\hline DEC1994 & 1 & 33.3 & 2 & 66.7 \\
\hline JUN1995 & 1 & 33.3 & 3 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=455\)} \\
\hline \multicolumn{5}{|c|}{Year changed refrigeration equip} \\
\hline OE101 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline 1994 & 3 & 100.0 & 3 & 100.0 \\
\hline \multicolumn{5}{|c|}{Frequency Missing \(=455\)} \\
\hline
\end{tabular}


Frequency Missing \(=451\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OE120 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline Elec & & 4 & 100.0 & 4 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OE130 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{2}{*}{Elec} & & 7 & 100.0 & 7 & 100.0 \\
\hline & \multicolumn{5}{|c|}{Frequency Missing = 451} \\
\hline
\end{tabular}
\begin{tabular}{ccccc} 
& Month/Year changed Otherl equip
\end{tabular}

Frequency Missing \(=450\)
\begin{tabular}{cccc} 
Year changed Otherl equip \\
OE141 & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}


Old Otherl equip fuel type
\begin{tabular}{lcccc} 
& OE160 & Frequency & Percent & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular}
\end{tabular} \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OE170 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline Natural Gas & 3 & 15.0 & 3 & 15.0 \\
\hline Elec & 17 & 85.0 & 20 & 100.0 \\
\hline & \multicolumn{4}{|l|}{Frequency Missing \(=438\)} \\
\hline
\end{tabular}


Frequency Missing \(=458\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & OE190 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline \multirow[t]{4}{*}{Added} & & 2 & 100.0 & 2 & 100.0 \\
\hline & & Frequency & Missing \(=\) & & \\
\hline & & Old Other2 & equip fuel & type & \\
\hline & OE200 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline & & Frequency & Missing \(=\) & 458 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline OBS & OC020 \\
\hline 1 & ADDED COMPUTER \\
\hline 2 & NEW COMPUTER SYSTEM \\
\hline 3 & NEW COMPUTERS AND COPY MACHINES \\
\hline 4 & ADDED COMPUERS \& PRINTERS \\
\hline 5 & ADDED SOME COMPUTERS, ETC. \\
\hline 6 & REPLACED COMPUTERS \\
\hline 7 & LEAVING LIGHTS FOR RESTAURANT ON ALL NIGHT LONG FOR ADVERTISEMENT \\
\hline 8 & ADDED 64 NEW "APARTMENTS" IN 1993 \\
\hline 9 & REPLACE WATER HEATER \\
\hline 10 & NEW TENANTS ON FIRST FLOOR REQUIRE MORE HEAT AND LIGHT \\
\hline 11 & CHANGES FROM ATOMIC ABSORPTION TO ICP UNIT \\
\hline 12 & COMPUTERS \\
\hline 13 & COPY MACHINE \\
\hline 14 & NEW TESTING EQUIPMENT \\
\hline 15 & COPY MACHINE WAS ADDED \\
\hline 16 & RENTED OUT MORE OF THE SPACE \\
\hline 17 & ADDITIONAL SPACE OCCUPIED \\
\hline 18 & PEOPLE MOVING INTO PREVIOUSLY UNOCCUPIED SPACES \\
\hline 19 & COMPUTER SYSTEM \& MANUFACTURING EQUIP \\
\hline 20 & VACATED BUILDING \\
\hline 21 & ADDED MORE MACHINERY \\
\hline 22 & CHANGED THERMOSTATS \\
\hline 23 & ADDED COMPUTERS \\
\hline 24 & MECHANICAL MANAGEMENT \\
\hline 25 & ADDED AN AIR VENT FAN \\
\hline 26 & TOOK OUT TRACK LIGHTS AND PUT IN FLOURESCENTS \\
\hline 27 & SUMMER SCHOOL MEANS INCREASED ENERGY CONSUMPTION \\
\hline 28 & PURCHASE OF ENERGY-EFFICIENT WELDING EQUIPMENT \\
\hline 29 & NEW LIGHTS ??? \\
\hline 30 & 5 HUGE BULBS IN SHOWROOM; UNCERTAIN OF TYPE, BUT NOT FLORESCENT \\
\hline 31 & INSTALLED A COMPUTER NETWORK..W/ 10 WORK STATIONS \\
\hline 32 & INSTALLED IN-HOUSE ENERGY MANAGEMENT SYSTEM \\
\hline 33 & ELECTRIC CARTS ARE ON A SPECIAL TIME METER \\
\hline 34 & ADDED COMPUTERS \\
\hline 35 & NEW BOILER IS MORE EFFICIENT. \\
\hline 36 & ADDED PORTABLE CLASSROOMS (3) BUILDINGS. \\
\hline 37 & HE TOLD ME HERE THAT HE ADDED A SWAMP COOLER \\
\hline 38 & REFRIGERATION \\
\hline 39 & A SECOND COOLER UNIT WAS ADDED \\
\hline 40 & REPLACED ICE MACHINE \\
\hline 41 & INSULATED BOILERS FOR HOT WATER \\
\hline 42 & ADDED EQUIPMENT FOR MORE POWER \\
\hline 43 & REPLACE ICE MACHINE \\
\hline 44 & ADDED FREEZER \\
\hline 45 & INSTALLED NEW SERVICE PANELS \\
\hline 46 & NEW KITCHEN AND STOVES \\
\hline 47 & MORE HOURS OF OPERATION \\
\hline 48 & BETTER WATER HEATER \\
\hline 49 & ADDED SWAMP COOLERS (2 6500 UNITS) \\
\hline 50 & CLOSED KITCHEN AREA. NO LONGER USING GAS THERE. \\
\hline 51 & INSTALLED A MORE EFFICIENT THERMASTAT \& CONSERVATION MEASURES \\
\hline 52 & MORE EMPLOYEES USING MORE ENERGY \\
\hline 53 & ADDED 4 COMPUTER TERMINALS,ADDED 2 FAX MACHINES, ADDED 2 COPIERS \\
\hline Prog & Nonparticipants Page I-169 1994 PG\&E Lighting Evaluation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline OBS & \multicolumn{4}{|l|}{OC020} \\
\hline 54 & \multicolumn{4}{|l|}{ADDED X-RAY MACHINE} \\
\hline 55 & \multicolumn{4}{|l|}{ADDED COMPUTERS} \\
\hline 56 & \multicolumn{4}{|l|}{ADDED A SOLAR HEATER FOR SWIMMING POOL} \\
\hline 57 & \multicolumn{4}{|l|}{POOL PUMPS, SAUNA HEATING REPLACED.} \\
\hline 58 & \multicolumn{4}{|l|}{INSTALLED SENSORS TO TURN ON AND OFF LIGHTS} \\
\hline 59 & \multicolumn{4}{|l|}{BOUGHT A SMOKE HOUSE} \\
\hline 60 & \multicolumn{4}{|l|}{PUT IN NEW 75 HORSE COMPRESSORS} \\
\hline OBS & \multicolumn{4}{|c|}{OC021} \\
\hline 1 & \multicolumn{4}{|l|}{TO LET PEOPLE KNOW THAT THEY ARE THERE. Month/Year of other change} \\
\hline OC030 & Frequency & Percent & Cumulative Frequency & \begin{tabular}{l}
Cumulative \\
Percent
\end{tabular} \\
\hline JAN1992 & 1 & 4.5 & 1 & 4.5 \\
\hline JUN1992 & 1 & 4.5 & 2 & 9.1 \\
\hline AUG1992 & 1 & 4.5 & 3 & 13.6 \\
\hline JAN1993 & 1 & 4.5 & 4 & 18.2 \\
\hline MAR1993 & 2 & 9.1 & 6 & 27.3 \\
\hline MAY1993 & 2 & 9.1 & 8 & 36.4 \\
\hline OCT1993 & 1 & 4.5 & 9 & 40.9 \\
\hline JAN1994 & 1 & 4.5 & 10 & 45.5 \\
\hline JUL1994 & 1 & 4.5 & 11 & 50.0 \\
\hline SEP1994 & 1 & 4.5 & 12 & 54.5 \\
\hline NOV1994 & 2 & 9.1 & 14 & 63.6 \\
\hline DEC1994 & 2 & 9.1 & 16 & 72.7 \\
\hline JAN1995 & 1 & 4.5 & 17 & 77.3 \\
\hline APR1995 & 1 & 4.5 & 18 & 81.8 \\
\hline MAY1995 & 2 & 9.1 & 20 & 90.9 \\
\hline JUN1995 & 1 & 4.5 & 21 & 95.5 \\
\hline JUL1995 & 1 & 4.5 & 22 & 100.0 \\
\hline & \multicolumn{4}{|c|}{Frequency Missing \(=436\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & EM010 & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline No & & 410 & 92.8 & 410 & 92.8 \\
\hline Yes & & 32 & 7.2 & 442 & 100.0 \\
\hline \multicolumn{6}{|c|}{Frequency Missing = 16} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EM020} & \multicolumn{4}{|c|}{Month/Year EMS installed} \\
\hline & Frequency & Percent & Cumulative Frequency & Cumulative Percent \\
\hline AUG1984 & 1 & 14.3 & 1 & 14.3 \\
\hline NOV1985 & 1 & 14.3 & 2 & 28.6 \\
\hline JUN1987 & 1 & 14.3 & 3 & 42.9 \\
\hline SEP1990 & 1 & 14.3 & 4 & 57.1 \\
\hline AUG1992 & 1 & 14.3 & 5 & 71.4 \\
\hline FEB1995 & 1 & 14.3 & 6 & 85.7 \\
\hline JUN1995 & 1 & 14.3 & 7 & 100.0 \\
\hline
\end{tabular}
\[
\text { Frequency Missing }=451
\]

\begin{tabular}{ccccc} 
Year cogeneration installed \\
CP021 & Frequency & Percent & \begin{tabular}{r} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Percent
\end{tabular} \\
9 & 1 & 20.0 & 1 & 20.0 \\
1978 & 1 & 20.0 & 2 & 40.0 \\
1988 & 1 & 20.0 & 3 & 60.0 \\
1991 & 2 & 40.0 & 5 & 100.0
\end{tabular}

Appendix J

PURCHASE DECISION LOGISTIC REGRESSION MODEL

\section*{Appendix J}

\section*{PURCHASE DECISION LOGISTIC REGRESSION MODEL}

A logistic regression model predicting free ridership was developed using self-report data in a pooled model incorporating data from all surveyed Lighting Program participants in the commercial sector. Section 3 (Methodology) contains a description of the superset of variables included in the model and rationale for their inclusion. This appendix describes the analytical steps undertaken in the model selection, building, and refinement process and presents the final model results.

Exhibit J-1 presents the variables used in the decision logistic regression model.

Exhibit J-1
Self-Reported Free Ridership: Superset of Model Variables
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Predicted Direction} \\
\hline \begin{tabular}{l}
Model \\
Variable
\end{tabular} & Wording of Question & \begin{tabular}{l}
Net \\
Participant
\end{tabular} & Free Rider & In Final Model \\
\hline & TIMING OF PLANS & & & \\
\hline \begin{tabular}{l}
PERIOD_ \\
BEFORE_ \\
AWARE
\end{tabular} & How long were you considering <the measure> before you heard about the program? & shortmoderate period & longer period & \\
\hline NO_PLANS & Wasn't planning on purchase until approached & yes & no & x \\
\hline \begin{tabular}{l}
PERIOD_ \\
AFTER_
\end{tabular} & How long did you take to decide to participate after becoming aware of the program? & longer period & shorter period & X \\
\hline AWARE & & & & \\
\hline \[
\begin{aligned}
& \text { WAIT_NO_ } \\
& \text { PGM }
\end{aligned}
\] & How long would you have waited to <take the measure> without the program? & longer period & shorter period & x \\
\hline WAIT_FOR_ & Did you delay a retrofit in order to participate? & no & yes & \\
\hline PGM & & & & \\
\hline & OPTIONS & & & \\
\hline QUOTES & How many estimates or quotes did you obtain before purchasing your new equipment? & few & many & \\
\hline STD_EQUIP & Did you consider purchasing standard-efficiency equipment? & yes & no & x \\
\hline BROKEN & (Did the customer mention broken equipment?) & yes & no & \\
\hline & PROGRAM INFORMATION AND BENEFITS & & & \\
\hline PGE_CONTA & How many times a year do you have contact with your PG\&E rep? & few & many & \\
\hline REBATE & (Did the customer mention the rebate?) & yes & no & \\
\hline BILL_ & (Did the customer mention bill savings?) & yes & no & \\
\hline & & & & \\
\hline FREE_RIDE & Before you knew about the program, which of the following statements best describes your company's plans to <take the measure>? & had considered, but no plans & planning to do it within the next 12 months & \\
\hline
\end{tabular}

\section*{J. 1 Variables Excluded from Model}

With the exclusion of PERIOD_BEFORE_AWARE, bivariate relationships between independent variables and FREE_RIDE (examined through cross-tabs and bivariate logistic regressions) showed them to be sufficiently associated. (i.e., they were at least marginally statistically significant.) These variables were therefore included in initial model runs. Variable PERIOD_BEFORE_AWARE was dichotomized, classifying customers into two groups: those who were and those who were not in the market for energy efficient lighting equipment before they heard about the program.

\section*{J. 2 Functional Form of Variables Included in Free Ridership Model}
"Yes" or "No" questions were entered into the initial model as dummy variables coded either " 1 " or " 0 ." Continuous variables WAIT_NO_PGM, QUOTES, PERIOD_AFTER_AWARE, and PGE_CONTACT were initially entered as continuous covariates with Box-Tidwell transformation terms. The Box-Tidwell terms allow one to test for nonlinearity in the logit; they are formed by creating an additional variable, "xlnx," for each continuous variable. A logisitic regression is then run with just two covariates: \(x\) and \(x \ln x\). When the \(x \ln x\) term is statistically significant, there is evidence of nonlinearity. This data screening process was carried out for each of the continuous variables in the model. Results of these tests showed that WAIT_NO_PGM could be entered as a continuous variable, but QUOTES, PERIOD_AFTER_AWARE, and PGE_CONTACT demonstrated nonlinear components and needed recoding. Techniques following Hosmer and Lemeshow \({ }^{1}\) were used to identify the correct functional forms of QUOTES, PERIOD_AFTER_AWARE, and PGE_CONTACT. A variable was created for PERIOD_AFTER_AWARE, which was set equal to the natural logarithm of PERIOD_AFTER_AWARE \({ }^{2}\). Further follow-up tests showed that QUOTES and PGE_CONTACT should be provisionally retained in the model as a continuous, untransformed variables.

\footnotetext{
\({ }^{1}\) Hosmer, D., and Lemeshow, S. (1989). Applied Logistic Regression. Wiley, New York.
\({ }^{2}\) In order to account for the many " 0 " responses, values of " 0 " were set to \(1 \times 10^{-6}\) before taking their natural logarithm. This resulted in minimum values equal to -14 for this variable.
}

\section*{J. 3 Variables Dropped from Model During Model Building}

The initial, full model contained all variables mentioned previously. The modelbuilding process involved testing subsets of variables until stable results were obtained. Criteria used to drop variables from the model included nonsignificant regression coefficients (e.g., the Wald Chi-Square test was not significant in a multivariate model) and nonsignificant change in model log-likelihood ratios with the inclusion or omission of the variable. \({ }^{3}\)

The QUOTES, WAIT_FOR_PGM, PGE_CONTACT, REBATE, BILL_SAVINGS, and BROKEN variables proved consistently nonsignificant and were dropped.

\section*{J. 4 Goodness-of-Fit Tests: Outliers, High Leverage Values, and Influential Observations}

Pearson residuals, deviance residuals, and hat values resulting from the later model specifications were examined. In the final model, Pearson residuals had an average value of 0.025 , and a variance of 0.938 . This quantity is thought to be \(N(0,1)^{4}\) when the model is correctly specified. Deviance residuals followed the same pattern as the Pearson residuals, with the same observations showing extreme values. Overall, fourteen cases had Pearson or deviance residuals greater than 2 or less than -2 . This represents just over \(5 \%\) of the sample used in the final model. Hat values showed that high-leverage values were not also influential outliers. Large hat values indicate points with undue weight on regression results and/or parameter estimates. Using a criterion of hat values exceeding \(2 \mathrm{k} / \mathrm{n}\) [where k is the number of independent variables and n is the number of observations in the model], only \(10 \%\) of the cases demonstrated high leverage. Six of the fourteen outliers (or \(2 \%\) of the sample) had leverage values greater than the criterion.

An examination of outliers revealed that the model tended to underpredict free ridership by anywhere from \(2 \%\) to \(20 \%\). For this reason, an adjustment was made to the predicted free ridership values using the following adjustments: If \(2 \%\) of the H.I.D. cases were underpredicted, the "adjusted" free ridership value for the H.I.D technology group was increased by \(2 \%\).

\footnotetext{
\({ }^{3}\) Hosmer, D., and Lemeshow, S. (1989). Applied Logistic Regression. Wiley, New York.
\({ }^{4}\) Normally distributed with a mean \(=0\) and a variance \(=1\).
}

\section*{J. 5 Collinearity}

Correlations between the continuous independent variables were checked, as well as the correlation matrix of regression coefficients.

\section*{J. 6 Missing Data}

Because many of the survey questions used in the model required the customer to recall various decision-making stages, there was a fair amount of missing data. Rather than including missing data with mean or median values, the model was run with fewer observations. If the sample size had permitted, cross-validation of model results on a hold-out dataset would have been performed, but these data were not available. The final model was run with sample weights. The weighted model was statistically significant, but individual variables differed in their statistical significance from the unweighted model. The final free ridership estimates were made using the coefficients obtained from the weighted commercial model.

\section*{J. 7 Precision of Results}

Results presented in Section 4 are shown with \(90 \%\) confidence intervals. Error levels used correspond to predicted average values for the technology group.

Exhibit J-2
Descriptive Statistics for Variables Included in Final Model
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Variable } & N & Mean & Std & Min & Max \\
\hline \hline NO_PLANS (0,1) & 407 & 0.763 & 0.416 & 0 & 1 \\
\hline WAIT_NO_PGM (years) & 304 & 7.505 & 5.083 & 0 & 20 \\
\hline STD_EQUIP (0,1) & 422 & 0.246 & 0.421 & 0 & 1 \\
\hline PERIOD_AFTER_AWARE [ln(weeks)] & 409 & -3.437 & 7.120 & -14 & 4 \\
\hline FREE_RIDE (0,1) & 431 & 0.116 & 0.314 & 0 & 1 \\
\hline
\end{tabular}

Source: Telephone Survey Data

\section*{J. 8 Descriptive Statistics}

All but one of the independent variables in the model are continuous. Mean values for dummy variables are the percentage of customers reporting, "yes," or otherwise responding affirmatively.

As shown in Exhibit J-2, many customers mentioned that they were not even in the market for lighting products when they were approached about the program (NO_PLANS \(=76 \%\) ). Further evidence that the program is contractor driven is provided by the retrofit plans of program participants: customers on average would have waited over 7 years to replace their lighting equipment. Consistent with these results is a low univariate self-reported free ridership rate: according to question FREE_RIDE, fewer than \(12 \%\) of the sample members were classified as free riders.

Exhibit J-3
Final Model Results

\section*{Unweighted}
\begin{tabular}{|l|cccc|}
\hline \multicolumn{1}{|c|}{ Variable } & \(\underline{\mathbf{B}}\) & \(\underline{\text { SE }}\) & \(\underline{\text { Wald Chi-Square }}\) & \(\underline{\mathbf{P}}\) \\
NO_PLANS & -0.9210 & 0.5003 & 3.3888 & 0.0656 \\
WAIT_NO_PGM & -0.1982 & 0.0534 & 13.7665 & 0.0002 \\
STD_EQUIP & -0.7028 & 0.5713 & 1.5133 & 0.2186 \\
PERIOD_AFTER_AWARE & -0.0555 & 0.0316 & 3.0713 & 0.0797 \\
INTERCEPT & -0.5377 & 0.4515 & 1.4185 & 0.2336 \\
\hline N & 257 & & & \\
-2LLR & 26.018 & & & \\
P & 0.0001 & & & \\
\hline
\end{tabular}

Weighted
\begin{tabular}{|l|cccc|}
\hline \multicolumn{1}{|c|}{\(\underline{\text { Variable }}\)} & \(\underline{B}\) & \(\underline{\text { SE }}\) & \(\underline{\text { Wald Chi-Square }}\) & \(\underline{\mathbf{P}}\) \\
NO_PLANS & -0.5787 & 0.5256 & 1.2123 & 0.2709 \\
WAIT_NO_PGM & -0.2247 & 0.0625 & 12.9201 & 0.0003 \\
STD_EQUIP & -0.4777 & 0.5758 & 0.6884 & 0.4067 \\
PERIOD_AFTER_AWARE & -0.0431 & 0.0340 & 1.6044 & 0.2053 \\
INTERCEPT & -0.8329 & 0.4647 & 3.213 & 0.0731 \\
\hline N & 257 & & & \\
-2LLR & 23.598 & & & \\
P & 0.0001 & & & \\
\hline
\end{tabular}

Source: Telephone Survey Data

\section*{J. 9 Model Results}

Results shown in Exhibit J-3 show the logisitic regression coefficients (B), their standard errors (SE), Wald Chi-Square values \({ }^{5}\), and the probability associated with the parameter estimate for each variable included in the model. All variables retained in the final unweighted model were significant at the p<. 10 level, except STD_EQUIP which was marginally significant. The overall weighted model-2 log-likelihood ratio, a measure of goodness-of-fit, was 23.60, with four degrees of freedom ( \(\mathrm{p}<.0001\) ). This indicates a statistically significant model. Data contributed to the final model came from 257 customers, from a possible 440 customers. As stated above, we elected to run the model with fewer data points rather than drop interesting variables with higher percentages of missing data. As with all behavioral models, results should be considered provisional and viewed in context. Cross-validation of the model on a separate dataset would test the reliability of the model in predicting free ridership and help strengthen conclusions.

All variables showed effects in the direction predicted (see Section 3, pages 3-38 and 3-39 of the report). The natural logarithm of PERIOD_AFTER_AWARE (PERIOD_AFTER_AWARE_LN) term showed a monotonic effect, with the probability of being a free rider decreasing as the amount of time to reach a decision to participate increased.

\section*{J. 10 Predicted Free Ridership}

Model results were used to obtain probabilities of free ridership for each lighting technology group. These probabilities were calculated in SAS using Proc Logistic. The probability of being a free rider, for any given technology group is
\[
\hat{p}=\frac{e^{b x}}{1+e^{b x}}
\]
where \(b\) is a vector of regression coefficients and \(X\) is a vector of mean values for the different explanatory variables. A probability for free ridership was assigned to each technology group by calculating the mean values for all the independent variables included in the model, for that technology group. These were then multiplied by their respective regression coefficients to yield the term " bX ". This term was exponentiated and the ratio of \(e^{b x} /\left(1+e^{b x}\right)\) formed the predicted probability of free ridership for each technology group. These were then combined with spillover estimates (as described in Section 3) to yield NTG ratios.

\footnotetext{
\({ }^{5}\) analogous to a t statistic
}

\section*{Appendix K}

GROSS ENERGY AND DEMAND IMPACTS BY COSTING PERIOD

\section*{Appendix K}

\section*{SUMMARY OF GROSS PROGRAM IMPACTS BY COSTING PERIOD}

Unadjusted program gross demand and energy impacts are summarized by time-of-use (TOU) costing periods in Exhibit K-1, yielding important H-factor information in support of Pacific Gas and Electric Company's (PG\&E's) cost-effectiveness calculations. The following hours were selected from the PG\&E costing periods when generating demand figures:
- Summer on-peak is defined as the weekday hour 3:00 PM to 4:00 PM.
- Summer partial-peak is defined for two distinct weekday hours: 11:00 AM to noon, and 6:00 PM to 7:00 PM.
- Summer off-peak is defined as the weekday hour 8:30 AM to 9:30 AM. To estimate this impact for this hour, a mean impact was generated using the hours 7:00 AM to 8:00 AM, and 8:00 AM to 9:00 AM.
- Winter partial-peak is defined as the weekday hour 5:00 PM to 6:00 PM.
- Winter off-peak is defined as the weekday hour 8:30 AM to 9:30 AM. To estimate this impact for this hour, a mean impact was generated using the hours 7:00 AM to 8:00 AM, and 8:00 AM to 9:00 AM.

The results presented in Exhibit K-1 were generated using evaluation program impact estimates for every hour in a year ( 8,760 hours). In general, the estimates provided are based upon only those specific hours that comprise a particular row (or costing period) in the exhibit. Whether demand or energy, the impacts presented reflect all contributing hours during that period, a mean or total, respectively. The following describes in greater detail how each column in the exhibit was calculated using evaluation impact results:
- Program gross unadjusted kW impacts are presented in the first column for a single specified hour of the day. In all cases, the hour specified occurs on a weekday. Each impact is the mean impact for a particular hour of the day, across all contributing days and customers. To achieve this, customer- or measure-specific mean estimates were taken across all contributing days; these intermediate mean estimates were then summed across all contributing customers and/or measures.
- The second column, the kW adjustment factor, is the ratio of each program demand impact (column 1 kW savings) to the summer on-peak demand estimate.
- The third column, kWh savings, is the sum of all hourly impacts during each costing period for all applicable daytypes. Note that some costing periods only contain weekdays, while others include both weekdays and weekends. The sum of all contributing rows is equal to the annual program impact.
- The fourth column, kWh adjustment factor, is the ratio of each program energy impact (column 3 kWh savings) to annual total energy savings.

Exhibit K-1
Gross Demand and Energy Savings by Costing Period
For COMMERCIAL Indoor and Outdoor Lighting Measures
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PG \& E Cost Period} & \multicolumn{4}{|c|}{IND O OR Lighting} & \multicolumn{4}{|c|}{OUTD O O R Lighting} \\
\hline & \begin{tabular}{l}
Program \\
Savings \\
Coin. \\
with \\
System \\
Max in \\
Period
\end{tabular} & kW Adjustment Factor & kWh Savings & kWh Adjustment Factor &  & \[
\begin{gathered}
\text { kW } \\
\text { Adjustment } \\
\text { Factor }
\end{gathered}
\] & kWh Savings & kWh Adjustment Factor \\
\hline Summer On-Peak: May 1 to 0 ct. 31 12:00-6:00 PM W eekdays & 62,389 & 1.00 & 48,148,944 & 0.16 & 782 & 1.00 & 782,958 & 0.04 \\
\hline \begin{tabular}{l}
Summer Partial \\
Peak: \\
May 1 to 0 ct. 31 \\
8:30 AM - 12:00 PM \\
W eekdays
\end{tabular} & 63,075 & 1.01 & 27,823,952 & 0.09 & 1,884 & 2.41 & 857,913 & 0.05 \\
\hline \begin{tabular}{l}
Summer Partial Peak: \\
May 1 to 0 ct. 31 \\
6:00 PM - 9:30 PM \\
W eekdays
\end{tabular} & 41,847 & 0.67 & 15,178,433 & 0.05 & 502 & 0.64 & 832,926 & 0.05 \\
\hline \begin{tabular}{l}
Summer Off-Peak: \\
May to 0 ct. 31 0 ther
\end{tabular} & 46,227 & 0.74 & 72,952,950 & 0.24 & 2,030 & 2.59 & 6,628,869 & 0.37 \\
\hline W inter Partial Peak: Nov. 1 to April 31 8:30 AM - 9:30 PM W eekdays & 47,804 & 0.77 & 79,112,554 & 0.26 & 933 & 1.19 & 2,436,030 & 0.13 \\
\hline W inter 0 ff-Peak: Nov. 1 to April 31 9:30 PM - 8:30 AM 0 ther & 41,394 & 0.66 & 61,163,621 & 0.20 & 2,030 & 2.59 & 6,519,670 & 0.36 \\
\hline
\end{tabular}

\section*{Appendix L}

\section*{EX ANTE NET-TO-GROSS RATIOS}

\section*{Appendix L}

\section*{EX ANTE NET-TO-GROSS RATIOS}

The attached print-outs list the net-to-gross ratios that are being applied in the MDSS as a function of the business type, the application (indoor vs. outdoor), and the technology. Also listed is the frequency of occurrence.

These are enclosed to document discussions of varying MDSS net-to-gross ratios in Sections 4 and 5 of the main body of the report.

Appendix M
COMMERCIAL REFUSAL COMMENTS

\section*{Appendix M}

\section*{RE/CUSTOMIZED PROGRAM PARTICIPANTS: REASONS FOR REFUSING THE SURVEY}

The following pages present comments made by participants at the time they refused to participate. The comments begin on the top half of the page and, if necessary, continue on the bottom half of the page under the same observation (OBS) number.

COMMENT1
PREFERS NOT TO SPEND A LOT OF TIME ANSWERING QUESTIONS, PREFERS TO* THE OTHER DATA SETS WERE ON CATI 12 AND IT WAS CODED AS A PARTIAL They liked the program very much except for the long survey at**MYT SEE QC 50 FOR THE COMMENTS Bruce was getting irate about the questions asked because**DET Susan says that survey is too long and really can't take the time \(t\) VIRGINIA NEVER ASKED HOW LONG IT WOULD TAKE WHEN I CALLED BACK SHE* Trish at Marin Office for DCOMP and Tom Tantriella for TCOMP**JRJ** did not really want to answer any more questions, but did; had a**C THAT ASKING ABOUT ST \#A WAS POINTLESS, IT'S SMALL PART OF FACIL.**J Mr. R was irritated w/ c/b, thinking he'd completed it already**JRJ PHS is happy with PG\&E's services but does not have time to**MYT Trudy did part, got started, then was interupted, said to \(c \backslash b * * S G W\) (6-21)Mr. Singh wants hardcopy to complete survey, stopped @**REJ Mr. Singh had difficulty understanding the questions;had customers* Need to completed TCOMP section.-gv--**REJ Matthew Duran got to sc. 88 before he refused to continue. Mr. Clark didn't know exactly when the work was done,**REJ Mr. Respini stated that the questons were to personal did not care* Ted said that "you're just gonna have to live with that" he has no* Mr. Yablon said he was very happy \(w /\) his metal halide lights and th he does not want to continue.**CG completed decision maker questions w Tom Ritter. He didn't know**RE Tim did LCOMP referred us to Comptroller Jan Petersen for rest**JRJ **CG

COMMENT2

DO WORK. STOPPED AT SCREEN 47.**CJG
REFUSED ON THAT CATI.
the end...suggest to cut down on length of survey*
he insisted that they do not qualify b/c are multi tenant.**DET
- finish it. She apologizes but suggests a 10 min. survey.**HEM

SAID IT HAD BEEN LONG ENOUGH ALREADY.**CG
**JRJ
skip problem. ***KAY Survey seems to have stopped at screen \(80 . * *\) SG MAILED SURVEY. DO *NOT* CALL THIS GENTLEMAN BACK.**JTM
Requests we not call again, he "has no time"**JRJ
complete survey***MYT
CALLED BACK, SHE REFUSED TO CONTINUE BECAUSE "TOO MANY QUESTIONS".* sc 47. ***REJ
wanted a print out of the rest of the questions**REJ
lcomp not complete, but John was very irritated 2 being called(SC2)
and didn't have time to complete the survey**REJ
to continue.**JS
more time to spend on this***MYT
e good PR but has no time for a phone survey.SC34***JRJ **CG
who good tech contact would be.
Jan said they are moving so a survey is not helpful at this time**J **CG

COMMENT1
see qc 358 for the comments
The survey skipped to the on-site scheduling, when only the "DCOMP" Left off on screen 87. Gary will NOT call 800 \# to continue survey. Mr. Holtzinger became very agitated at the financial questions**REJ he said that he is a very BUSY man.***MYT refused to continue fr sc35
MR. MOHAMED STARTED SURVEY STOPPED ON SCR. 28 HE COULDN'T UNDERSTAN Started \(\mathrm{w} \backslash \mathrm{Mr}\). Anast. He had some difficulty understanding the**REJ DID NOT WANT OT FINISH SURVEY FELT ? WERE IRRELEVANT. BECAUSE HE ON mr . stanhor got to scr. 91 and decided to stop the survey said that Johanna completed decision making and lighting ques..for technical* the Office Manager completed 1\&2; said Dr. Williams didn't take Dr. Liebowitz does not wish to give more time to the survey. Got to doctor does not want to continue the survey**CG see msfd293 for the comments.
completed first 2 sections \(\mathrm{w} \backslash \mathrm{Mr}\). Tom; there is no contact for DID NOT HAVE TIME TO COMPLETE SURVEY.**ALS Terry Turner sounds irritated and didn't want to go on b/c he did** GREG COMPLETED PART OF THE SURVEY,WAS INTERESTED IN FINISHING THE** He's too busy today to do survey so he suggested that we call until Mr. Baker says they just redid the lighting again through PG\&E \&**J REFUSED TO COMPLETE SURVEY**LMC
he said that he could answer the questions for the descision makein HE DOES NOT WANT TO DO THE SURVEY AT ALL..**CJG
mr olson stated that he didn't have time for a survey and will
COMMENT2
section was competed.**KAY On-Site Refused, so its a PARTIAL...**KA No time; refused to continue: PARTIAL.
Had to T\&T stopped @ sc 32**REJ
**MYT
D ENGLISH TOO WELL.**RRF
questions, had to leave. did not want \(c \backslash b * * R E J\)
LY PURCHASED A FEW LIGHT BULBS.**ALS
it was entirley too long and how did we expect someone (see scr. 2)* call Rona Griego @ (714)721-8000***MYT left 800\# on machine***MYT
ph calls. therefore don't \(c \backslash b . * * R E J\)
screen 88.**BB
**CGthe secretary scolded me**CG
do not call.**DSH
tech questions.***REJ
not know the answers to some questions***MYT
OTHER HALF BUT JUST HAS NO TIME SO SEND HIM A HARD COPY.**DET
we catch him w/some time to spare.**HEM Refused on 6/13***HEM says this survey is just "flogging a dead horse"**JRJ
\(g\) part but there is no one else for the other sections of the surve never have time for one.

COMMENT1
```

MRS. CALVERT SAID THAT SHE DON'T THINK THEY WOULD HAVE MUCH INFO. T
Wasn't interested in doing a survey that takes so long b/c he is a*
adele refused to do survey b/c she said that she doesn't have time*
spoke w\Chuck Carpenter, who was dissatisfied with PG\&E and**REJ
see qc 114 for comments**
Dave said that he's sure that he had already completed this**MYT
see qc 114 for comments**
Martha said she does not have the time, she has three children and
see qc 114 for comments**
MR. KIMBALL KEPT SAYING HE REMEMBER GETTING A REBATE AND DOING**CJG
see qc 114 for comments**
Mr. Calatto (owner of building) was not interested in doing the**HE
Refused b/c she can't take that much time out of her day to answer*
Charlaotte says her boss does not want her to complete the survey**
Mr. Bal said that he is too busy and refuses to take survey**MYT
MR. SEILER SAID THAT HE DOSEN'T LIKE TO DO THINGS OVER THE PHONE
see qc 114 for comments**
Liked the program and would do the survey if we can consolidate it*
Lou said that they have already done the survey***MYT
Said he's busy and does not want to participate in a survey**MJP
1st \# is wrong. Sec said Doug is volunteer, send something in the**
ty shettron is no longer with the company and mary hunter took his*
BUNNIE JUST DOESN'T HAVE THE TIME TO DO ANY SURVEYS.**JGP
Office mgr said she would never have the time to do a survey**MJP
see qc 42 for the comments.**DSH
COMMENT2
O HELP US OUT BECAUSE THEY ARE A SMALL FIRM**RRF
one man show at this address.**HEM
refused survey**REJ
survey.**MYT
is just too busy.
THE PAPER WORK, BUT HE CLAIMS THERE IS NO ONE TO DO SURVEY.**CJG
survey. Ezekiel Contreras referred us to Mr. Calatto for info.**HE
questions.**HEM
please send hard copy**JRJ
AND JUST ended the call
to a 1 minute survey.**HEM
**MYT
mail \& he'll get it.**REJ
place and stated that she had no time and didn't know (see scr 2)**
**JGP

```
\begin{tabular}{|c|c|}
\hline OBS & COMMENT1 \\
\hline 76 & refused b/c he was too busy to participate***MYT \\
\hline 77 & LOGGED ON TWICE BY MISTAKE CHUCK DECLINED TO DO THE SURVEY IT WOULD \\
\hline 78 & John said "I don't have 15 min for a survey." \\
\hline 79 & see qc 114 for comments** \\
\hline 80 & see qc 114 for comments** \\
\hline 81 & see qc 114 for comments** \\
\hline 82 & Kathy said she didn't have time, they have just two lines, and**REJ \\
\hline 83 & CHARLES YOZSA HAD A STROKE AND CANNOT SUCCESSFULLY COMPLETE THE SUR \\
\hline 84 & DO NOT CALL BACK. STATED HE DID SURVEY WITH ANOTHER COMPANY.**SMB \\
\hline 85 & Mr.Lucke said he had no time for survey He had already completed**R \\
\hline 86 & DO NOT CALL HIM BACK; HE SAID HE WAS ALREADY CONTACTED BY ANOTHER** \\
\hline 87 & DON NOT CALL BACK. STATED HE ALREADY DID A SURVEY WITH ANOTHER**SM \\
\hline 88 & DO NOT CALL BACK. STATED HE DID THE SURVEY WITH ANOTHER**SMB \\
\hline 89 & DO NOT CALL. HE STATED THAT HE HAD DONE A SURVEY WITH ANOTHER COMP. \\
\hline 90 & DO NOT CALL. HE STATED THAT HE HAD DONE A SURVEY WITH ANOTHER COMP. \\
\hline 91 & DO NOT CALL. HE STATED THAT HE HAD DONE A SURVEY WITH ANOTHER COMP. \\
\hline 92 & GARY SAID "I DONT DO SURVEYS THAT LONG OVER THE PHONE" THAK YOU**CG \\
\hline 93 & ms. kimber didn't want to participate in the survey, she was too**D \\
\hline 94 & DO NOT CALL. HE STATED THAT HE DONE A SURVEY WITH ANOTHER COMPANY.* \\
\hline 95 & He isn't interested and claims that he has already participated in* \\
\hline 96 & Asked who is paying for survey, when told it was for PG\&E he refuse \\
\hline 97 & This is a pager \#, not an answering machine.**DT**DT \\
\hline 98 & busy no time to do survey**LMC \\
\hline 99 & larry does not have time to answer questions at all**KYS \\
\hline 100 & DO NOT CALL. HE HAD STATED THAT HE HAD DONE A SURVEY WITH ANOTHER** \\
\hline OBS & COMMENT2 \\
\hline 76 & **MYT \\
\hline 77 & TAKE TO LONG.**CG \\
\hline 78 & \\
\hline 79 & \\
\hline 80 & \\
\hline 81 & \\
\hline 82 & she'd preffer that we send the survey through the mail**REJ \\
\hline 83 & VEY**JGP \\
\hline 84 & \\
\hline 85 & one survey, didn't want to be involved in another**REJ \\
\hline 86 & COMPANY WHO DID A SURVEY WITH HIM THIS MORNING. \\
\hline 87 & COMPANY \\
\hline 88 & COMPANY.**SMB \\
\hline 89 & \\
\hline 90 & \\
\hline 91 & \\
\hline 92 & \\
\hline 93 & busy.**DSH \\
\hline 94 & \\
\hline 95 & this survey.**HEM \\
\hline 96 & d to take survey or offer explanation for his refusal**MJP**MJP \\
\hline 97 & Mr. Mannina, Sr declined to answer most questions, then terminated. \\
\hline 98 & \\
\hline 99 & **KYS \\
\hline 100 & COMPANY.**AD \\
\hline
\end{tabular}

\section*{COMMENT1}
```

see qc 376 for comments**
DO NOT CALL. HE STATED THAT HE HAD DONE A SURVEY WITH ANOTHER COMP.
mr. WATSON SAID that THEY HAVE LIGHTING CONTRACTORS THAT DO SURVEYS
Mickie says they've just started their harvest season and will have
DO NOT CALL. HE STATED THAT HE HAD DONE A SURVEY WITH ANOTHER COMP.
DO NOT CALL. HE STATED THAT HE HAD DONE A SURVEY WITH ANOTHER COMP.
SAID THAT HE'S NOT INTERESTED IN DOING SURVEY, HE SAID THAT HE'S**R
DO NOT CALL. HE STATED THAT HE HAD DONE ANOTHER SURVEY WITH ANOTHER
see qc 81 for the comments**
DO NOT CALL. HE STATED THAT HE HAD DONE ANOTHER SURVEY WITH**AD
DO NOT CALL. HE STATED THAT THEY HAD DONE A SURVEY WITH ANOTHER**AD
too busy, pg\&e has surveyed him very recently, not us., he thinks
Pete was in a serious hurry. refused oral survey, wanted written**R
see qc 114 for comments**
see qc 114 for comments *****
MR. ZIEGLAR PREFERS NOT TO ANSWER ANY QUESTIONS.**CJG
see qc 114 for comments**
see qc 114 for comments**
John said he did not have time after I told him it would take 20-25
DO NOT CALL BACK. HE STATED THAT HE DID SURVEY WITH ANOTHER COMP.*
Said she had taken survey and didn't feel it applied to her, so ref
Chuck refused after I told him it would take 20-25 min.
Jim Hamlin is no longer there, manager that was there knew nothing
bob does not do surveys**JGP
SHE FEELS THAT IT IS JUST TO MUCH TIME (ABOUT 20 MIN. OR SO) TO
COMMENT2
FOR THEM AND THAT HE REALLY DIDN'T THINK THAT THEY(SEE SCR. 2)**DSH
no time for a survey until late NOV or DEC**JRJ
VERRY HAPPY WITH PROGRAM.**RRF
COMPANY.**AD
ANOTHER COMPANY.**AD
COMPANY.**AD
one***REJ
min.
used.**MJP
about program.**DET
**JGP
TAKE UP ANSWERING QUESTIONS.**CJG

```

OBS

COMMENT1
DO NOT CALLBACK. STATED THAT HE DID SURVEY WITH ANOTHER COMPANY.** DO NOT CALL BACK. STATED HE DID SURVEY WITH ANOTHER COMPANY**SMB He's hard to get a hold of so I left the 800\#. Piero is the buildi LARRY SAID THAT HE HAS ALREADY DONE A SURVEY REGARDING THE LIGHTING Bob Lycette recomended Jenny Scarlet who refused the survey because Spoke to Brett who said he couldn't spend 20 minutes on a survey.** mr . webb stated that he was just too busy at the time so he chose \(t\) MS. UNDERWOOD PUT ME THROUGH TO A WOMAN NAMED IRENE. doesn't have t Carl says he already did a survey on this and hasn't had any new li Irene said she wants a survey in the mail, but is not willing to JAN SAID THAT THE SURVEY IS ENTIRELY TOO LONG BUT SHE DID HAVE A PAM ABRUPTLY ended the call AND STATED THAT SHE WAS NOT INTERESTED IN**KAY Refused to take a survey for 20 min even if done in parts**MJP
Kim said it would be impossible to do survey on ph, but if we**REJ MAUREEN SAID SHE DOES NOT HAVE 15 MIN.SHE SAID THERE WAS NO GOOD TI JOHN WAS BUSY. HE SAID IT TAKES TOO MUCH TIME \& TIME IS**JLG MAGNUS SAID HIS CO. WAS TO SMALL. REFUSED TO DO SURVEY.**KAY CONNIE SAYS SHE HAS CUSTOMERS ALL DAY AND DOES NOT HAVE THE TIME TO Mrs. Theile stated that its a small business and they do not have \(t\) BEFORE I COULD EXPLAIN WHO I WAS CALLING FOR HE SAID HE WAS ALL**KY I ONLY HAVE ONE SET OF LIGHTS AND DONT CARE TO PARTICIPATE.**CG
Mr. Olivera had already done this survey with another interviewer** Mr. West refused to do the evaluation on the phone b/c he can not** Mary Lou not in, new secretary doesn't know her schedule**JRJ joe's out of town today will be back in tomorrow morning.**DSH

COMMENT2
```

ng manager.**HEM SECT'Y SAID HE GOT THE MESSAGE. WAIT A WHILE,C/B.*
RETROFIT WITH SOMEONE ELSE..AND DOENS'T WISH TO DO THIS ONE.**MYT
she did not have 20-25 min.
o decline the survey.**DSH
time until Sept--refused***lmc**LMC
ghting done since that survey**JRJ Mistaken entry**156
complete the survey over the phone.
GOOD DISPOSITION.
DOING THIS SURVEY***KAY
send her something, she'd gladly fill it out**REJ**REJ
ME TO CALL HER BACK**CG tried to find someone else no luck**CG
MONEY. DID NOT WANT TO CONTINUE.
DO THE SURVEY**JGP
he 20-30 min. They are assisting customers.**JMS
TAKEN CARE OF AND ended the call**KYS
**AD
so he refused to do this one because it would be a repeat***MYT
stay on the phone that long,he said to send him hard copy, (sc2)**M
Mary did not know date of installation \& refused to continue****KAY
husan said whats the big deal we changed the lights goodbye**CGH

```

OBS

COMMENT1
```

Mike doesn't "that kind of time" and refused to do survey***MYT
mr. seiler refused to do the survey. his reasoning was that he
Mr.Simmons said,'that he does not have the time now or in the futur
sec. stated he didn't have any time to answer questions.**DSH
Subash Rane (mngr) claims he completed the survey yesterday.**JRJ
SAID THAT 20 MIN. ON THE PHONE IS TOO EXCESSIVE AND HE WOULD HELP**
SEE QC 379 FOR THE COMMENTS**DSH
Mr.Carpenter did not want to be bothered.**JMS
SAYS THAT HE HAS NO TIME TO PARTICIPATE IN THE SURVEY.****KAY
HE COULDN'T DEVOTE THE TIME TO THE SURVEY. IF WE SEND HIM SOMETHING
Lee Lohff said he could't think of a more conveinent time, sounded
HE SAID THAT HE REALLY WANTS TO HELP BUT HE RUNS HIS OWN BUSINESS**
SCOTT SAID HE DOESN'T HAVE TIME TO ANSWER QUESTIONS HE SAID WE CAN*
MR. RALPH SAID HE WASN'T INTERESTED**RRF
MR. WALKER STATED THAT 15 MINUTES OR SO IS ENTIRELY TOO LONG AND
MR. MELVIN WAS VERY BRASH AND STATED THAT HE DOSEN'T HAVE TIME AND
SEE QC 160 FOR THE COMMENTS
SEE QC 48 FOR THE COMMENTS**
SEE QC 406 FOR THE COMMENTS**DSH
Call correct number first if no answer call this number**JMS
dan seemed upset b/c the retrofit program went bad...had to replace
"We're too busy to do a telephone survey," said Fran.
THEY DO NOT HAVE TIME TO DO SURVEY**JGP
GREG asked if HE HAD TO PATICIPATE I SAID NO SO HE DECLINED**CG
NEW MANAGEMENT KNOWS NOTHING ABOUT THE PROGRAM**JGP
COMMENT2
dosen't "do survey's over the phone" and ended the call**DSH
e to take time for the survey.**JMS
**JRJ
US IF WE MAILED HIM SOMETHING**LDB

```
IN WRITING HE WILL DO IT.**LDB
testy. this is a refusal, per Dante.
AND HAS A NEWBORN BABY HE JUST DOES NOT HAVE ANY TIME**JMT**JMT
SEND HIM SOMETHING IN THE MAIL**KYS
THAT HE WILL NEVER HAVE THAT MUCH TIME, SO HE DECLINED THE SURVEY
WILL NEVER HAVE TIME AND ended the call.
    (510) \(4750481 * * J M S\) Not interested she refused.**JMS
    \(20 \%\) of ballasts w/in 1st yr of retrofit...refused to do survey.**MY
    **JGP
    **JGP

OBS
```

COMMENT1
secretary said, "to be honest, Randy just won't do it."**MYT
Mr. Harless says he is happy with the program and his PG\&E rep, but
ms. forbes said that someone else already contacted her with a
Mr. Walker said he wasn't interested**REJ
was not interested in taking survey.**ALS
Not eligible for survey. See sc 2 for comment**REJ
Mr. Pierre didn't "want to spend any mor time on this".
SEE QC 96 FOR THE COMMENTS
mr. becker said that he already did a survey for one of his sights
SEE QC 406 FOR THE COMMENTS
see qc 78 for the comments
spoke w\Mrs Muenter, who said "this is a retail business, we're
see qc 78 for the comments
SEE QC 476 FOR THE COMMENTS**
ans machine**LMC moving location \& will be unable to do survey, sai
ROY BEGAN THE SURVEY KNOWING HE COULD JUST SPARE AROUND 10 MIN. ROY
SEE QC 160 FOR THE COMMENTS
SEE QC 406 FOR THE COMMENTS
MR. BAKER DIDN'T WANT TO DO A SURVEY BECAUSE HE WOULD HAVE TO DIG
Ernie felt the survey was a waste of time. He refused interview.
FEELS HE HAS DONE TO MANY SURVEYS ALREADY DOES NOT CARE TO PARTICIP
MR. BURGESS said that pg\&e already sent him out a lenghty questiona
Laura says no one there would have the time or inclination to do
DIDN'T KNOW WHEN LIGHTING WAS INSTALLED - SUGGESTED WE "PASS" ON
he said that he has a million people from electrical companies call
COMMENT2
**MYT
has no time for a survey**JRJ
survey regarding her lights. so i coded it as a refusal**DSH
**ALS
**REJ
so he didn't want to participate.
**DSH
very busy, send a questionaire and I'll try to fill it out."
**DSH
d it was ok to call in July when relocated**KAY**KAY
DID NOT KNOW WHEN THE LIGHTING WAS INSTALLED. THANKED AND TERM.**AD
UP ALL THE INFO ON THOSE LOCATIONS AND HE DIDN'T HAVE TIME.
see sc 2 for comment*
ATE.**CG
ire and he feels as though he's done enough as far as this program.
the survey, so just " take us off your list."
DOING SURVEY WITH THEM.
ing him about surveys and he just does not have the time**JMT

```

COMMENT1
```

do not call.**CG
I spoke to Callie and she just didn't have enough time at the**CJG
**CG
Sam is extremely happy with the program but refuses to do the surve
Mr. Coyle says he has no time for survey**JRJ
**DSH
SEE QC 476 FOR THE COMMENTS**
this was a multi site but you should see qc 65 it is a refusal; .
I WAS TOLD THAT NO MS.WINTERS WORKS THERE. THE LADY THAT I WAS SPEA
SEE QC 160 FOR THE COMMENTS
MS. CLARK SAID SHE DOESN'T HAVE TIME FOR THIS AND ended the call**RRF
SEE QC 160 FOR THE COMMENTS**DSH
MS.SPENCER SAID THAT THE PERSON WHO HAD THE PROG. INSTALLED NO LONG
SEE QC. 407**CG
GAVE SECRETARY 800 NUMBER FOR THE NEW CONTACT MAGGIE TONINI.
JERRY SAID THAT "I DO NOT DO PHONE SURVEYS" THEN ended the call***CG
**HEM
Mr. Morgan is brand new in job, doesn't know anything about program
hard man to reach b/c he is in between 6:45 and 7:15 only then he**
HUGE CUTBACKS IN PERSONEL JUST NO TIME**CG
CHARLES MEADORS DIRECTOR HAS 800 NUM**CG
Spoke to her. She said she has other surveys from salespeople, so I
SEE QC.200**CG
SEE QC. 200
SEC. SAID THAT HE TOLD HER TO TELL US THAT HE IS JUST TOO BUSY TO**
COMMENT2
moment to complete survey.**CJG
mr.jenson was short with me and did not have 20 mins..**CG
y over the phone.Wants me t send hard copy.
**JRJ
**DSH
Do Not Call Ross Stores. ***DSH
KING TO SAID THAT SHE WAS NOT INTERESTED AND ended the call.**CJG
ER WORKS HERE AND GO TO SCR. 2 FOR MOR INFO.**RRF
MAGGIE CALLED BACK AND SAID I HAVE NO TIME**CG
**HEM
refused**LMC
roams around the different job sites..left 800\# with sec***MYT
OUR SURVEY IS WRITTEN IN SUCH A WAY THESE PEOPLE WANT A CONFERENCE
told her we weren't selling anything, but she still refused.
COMPLETE A PHONE SURVEY AT THIS TIME**JMT

```
\begin{tabular}{|c|c|}
\hline OBS & COMMENT1 \\
\hline 226 &  \\
\hline 227 & CLAIMED TO HAVE COMPLETED THE SURVEY ALREADY.***MYT \\
\hline 228 & ext 219**CGH left our 800number on the voice mail**CGH \\
\hline 229 & LEFT 800 NUM. WITH HIS SEC.**CG \\
\hline 230 & SEE QC 440 FOR THE COMMENTS** \\
\hline 231 & AMRIK SAID HE DID NOT HAVE TIME FOR SURVEY.**ALS \\
\hline 232 & SEE QC. 442**CG \\
\hline 233 & AFTER TELLING PERSON WHO I WAS AND WHAT CALL WAS REGARDING HE SAID \\
\hline 234 & SEE QC 442**CG \\
\hline 235 & MS. SHANAHAN SAID That she's not interested in doing a survey \\
\hline 236 & SEE QC 442**CG \\
\hline 237 & SAL SAID THAT HE WAS NOT INTERESTED IN TAKING ANY SURVEY.**ALS**ALS \\
\hline 238 & SEE QC 422**CG \\
\hline 239 & SEE QC 440 FOR THE COMMENTS** \\
\hline 240 & SEE QC 440 FOR THE COMMENTS** \\
\hline 241 & SEE QC 440 FOR THE COMMENTS** \\
\hline 242 & See QC 14.** \\
\hline 243 & CALL BACK LATE NEXT WEEK \(7 / 6\) HE ASKED FOR ELSIA'S NUMBER.**CG \\
\hline 244 & See QC 14.** \\
\hline 245 & SPOKE WITH RUSS HE IS SATISFIED WITH RETROFIT PROGRAM.**ALS \\
\hline 246 & SEE QC. 402 \\
\hline 247 & See QC 14.** \\
\hline 248 & MR WOOD WOULD NOT EVEN LET ME SPEAK HE WAS HOSTILE AND NOT INTERESTED.**CG \\
\hline 249 & See QC 14.** \\
\hline 250 & See QC 14.** \\
\hline OBS & COMMENT2 \\
\hline 226 & Mr. Omran said he didn't have time for survey. \\
\hline 227 & \\
\hline 228 & WE DONT DO PHONE SURVEYS IT IS AGAINST OUR POLICY**CG \\
\hline 229 & \\
\hline 230 & \\
\hline 231 & \\
\hline 232 & \\
\hline 233 & HE HAD NO TIME**ALS \\
\hline 234 & \\
\hline 235 & **JGP \\
\hline 236 & \\
\hline 237 & \\
\hline 238 & \\
\hline 239 & \\
\hline 240 & \\
\hline 241 & \\
\hline 242 & \\
\hline 243 & \\
\hline 244 & \\
\hline 245 & BUT DOES NOT HAVE TIME TO DO SURVEY.**ALS \\
\hline 246 & \\
\hline 247 & \\
\hline 248 & \\
\hline 249 & \\
\hline 250 & \\
\hline
\end{tabular}
```

OBS
COMMENT1
251 See QC 14.**
252 SEE QC. 294**CG
253 See QC 14.**
254 See QC 14.**
255 See QC 14.**
256 See QC 14.**
257 See QC 14.**
258 See QC 14.**
259 See QC 14.**
260 See QC 14.**
261 See QC 14.**
262 See QC 14.**
263 See QC 14.**
264 See QC 14.**
266 See QC 14.**
269
270
271
272
273

```
265 call jim wood on friday**CG
```

265 call jim wood on friday**CG
267 THIS PLACE IS A DAIRY QUEEN AND MR. DAYA SAID THAT HE HAS NO TIME
267 THIS PLACE IS A DAIRY QUEEN AND MR. DAYA SAID THAT HE HAS NO TIME
268 MR. ANOMA IS NEVER THERE BETWEEN BUSINESS HOURS (8AM-5PM)***MYT
268 MR. ANOMA IS NEVER THERE BETWEEN BUSINESS HOURS (8AM-5PM)***MYT

```
henry said that he didn't understand and was eager to hang up befor
```

henry said that he didn't understand and was eager to hang up befor
**CG
**CG
Naomi said that she was the only one at the store and doesn't have*
Naomi said that she was the only one at the store and doesn't have*
HE PREFERS NOT TO DO SURVEY B/C HE IS VERY BUSY***MYT
HE PREFERS NOT TO DO SURVEY B/C HE IS VERY BUSY***MYT
HE SAID THAT HE WAS NOT INTERESTED AT THIS TIME IN DOING A SURVEY.
HE SAID THAT HE WAS NOT INTERESTED AT THIS TIME IN DOING A SURVEY.
DID NOT HAVE TIME TO DO SURVEY.**ALS
DID NOT HAVE TIME TO DO SURVEY.**ALS
HELEN SAID SHE CHECKED INTO THE PROGRAM AND WAS NOT INTERESTED**ALS
HELEN SAID SHE CHECKED INTO THE PROGRAM AND WAS NOT INTERESTED**ALS
COMMENT2
COMMENT2
see qc\#14**CG
TO DO A SURVEY BECAUSE HE HAS TOO MANY CUSTOMERS TO TEND TO.
**MYT
e i got a chance to explain, he doesn't remember the program**KAY
**CG
any time to talk on the phone and ended the call b4 I could proceed**MYT
**CJG

```

OBS
```

COMMENT1
CLIFFORD CHOW. COMPANY OWNED STORE**CG
they just do not have time to do phone survey**LMC
was SATISFIED WITH PROGRAM DID NOT WANT TO DO SURVEY.**ALS
Lori said she did not have the time, no time was good.**CG
no time, happy with lights**LMC
DR. NUCKTON WAS AN EXTREMELY NOT INTERESTED INDIVIDUAL WHO REFUSED IN A LESS
SPOKE WITH MR. COSART DID NOT WANT ONSITE VISIT.**ALS
sent hard copy and Denise(sec) knows that we need phone survey**ALS
DR. FUNK SAID THAT HE REALLY DOESN'T HAVE THE LENGTH OF TIME THIS**
**REJ
Dr Joseph has asked for hard copy, he has }800\mathrm{ number. do not call**
Barbara Barstow, ofc mgr for 191 W. Shaw, call her at corr phone**L
cindy office mngr felt like question. were not neccesary for light*
C/B SPOKE WITH MR. ROSS SAID HE WAS HAPPY WITH LIGHTS BUT DOES NOT*
DOES NOT HAVE TIME TO LOOK IT UP WE SHOULD KNOWTHE DATE SINCE IT IS
Calvin refused to do the survey after Itold him it would take 20-25
REFUSED--HAD JSUT COMPLETED ANOTHER SURCEY FOR ANOTHER ACCOUNT***LM
does not want to be bothered****KAY
Mr. patel was confused by the relationship between Quantum \& PG\&E**
Chris said he does not answer questions over the phone,but ended the call
Her partner says PG\&E refuses to pay for equipment damaged there by
MR. PATEL SAID THEY DID NOT PATICIPATE.**CG
only vaguely remembers participating, but claims that he wouldn't k
Mr. Onaga wants PG\&E call him direct, \& ask him the questions.
John Randall has replaced Marv Samuelson.**BB john knows nothing ab
COMMENT2
**CG
** LMC
**CG
**LMC
THAN POLITE FASHION
SEC SAID THAT DR. LEY THREW OUT THE HARDCOPY \& DID NOT HAVE TIME**K
REQUIRES HE HAS ALOT OF PATIENTS HE'S A VERY BUSY DOCTOR**RRF
Dr. Don said he had no time for survey**REJ
him back--no time to do phone survey.**LMC
BARBARA SAID THAT THEY DO NOT DO ANY TELEPHONE SURVEYS**************
program and refused to answer anymore.**ALS
HAVE TIME FOR SURVEY.**ALS
ON THE APPLICATION FOR THE REBATE**CG
min.But He wants a hard copy.
he declined survey**REJ
before I could offer to send a hard copy.
bad voltage. Says until PG\&E makes good, don't wish to do survey.**
now adequate info to answer survey questions, so don't cb****KAY
out stockton location, he couldn't refer me to another contact t\&t*

```

COMMENT1
RON SAID HE DID NOT HAVE TIME IT. AND ended the call.**ALS HE SAID THAT HE JUST WILL NEVER HAVE 20 MINUTES TO CHAT ON THE PHON sharon said that she didn't have time to answer a 20 minute survey MR. JOHN HANSEN DID NOT WANT TO DO THE SURVEY***ALS
BEFORE I SAID WHAT I WAS CALLING ABOUT SHE SAID THAT SHE WASN'T
BEFORE I HAD A REAL CHANCE TO EXPLAIN HE SAID THAT HE HAD NO INTERE
SENT A HARD COPY**CG
ANNA SAID SHE WAS NOT INTERESTED IN ANY MANAGEMENT, WHEN I TOLD HER
MR. BORODKIN SAID HE WAS NOT INTERESTED.**ALS
BOB SAID HE IS SHORT STAFFED.I GAVE HIM OUR 800\# FOR HIM TO CALL US
MR. HARPERS SEC. STATED THAT HE SAID HE WAS NOT INTERESTED IN DOING
WAS NOT INTERESTED IN DOING SURVEY. REFUSED.............
JOEL SAID THAT HE DID ONE ALREADY AND ended the call.**DET
said that that would be too much time on the phone to do a
DID NOT HAVE TIME TO DO SURVEY.**ALS**ALS
HE SAID THAT HE WILL NEVER HAVE TIME TO DO A TELEPHONE INTERVIEW
**ALS
Les said he does not have \(20-25\) minutes to give me, and that he nev
WAS SATISFIED WITH RETRO LIGHTS BUT DID NOT HAVE TIME FOR SURVEY.**
Jean said that she'd contacted PG\&E \& she was sent the form
no time ever**LMC
MUST CALL ON THE 11TH AT 1PM**CG
JOE SAID HE IS NOT INTERESTED IN ANSWERING ANY QUESTIONS. HE ALSO**
MR. DOUGLAS SAID THAT A GUY FROM PG\&E IS COMING OUT TODAY THEIR PLA
Mr. Hughes wants his PG\&E acct. rep to verbally give him**REJ

COMMENT2
```

E NOT EVEN IN SEGMENTS**JMT

```
**KAY
INTERESTED AND ended the call.
ST **JMT**JMT
IT WAS JUST A SURVEY SAID SHE HAD NO TIME.**D
REFUSAL.**ALS
BACK WHEN HE HAS TIME. CHECK ABOVE INFORMATION.**DET
A SURVEY AT THIS TIME.
**DET
survey so he would rather not participate.
BUT HE REALLY APPRECIATES THE PROGRAM**JMT
WAS NOT INTERESTED IN TAKING SURVEY.**ALS
er will.**DET
**ALS
to fill out; she has no time for phone survey.**REJ
**LMC
SAID HE DOESN'ं \({ }^{\prime}\) KNOW WHAT I'M GOING TO ASK BUT HE'S NOT INTERESTED*
NNING ON DOING SOME MORE RETROFITS--DON'T HAVE TIME TO DO SURVEY
survey, he says he has no time for ph survey***REJ

COMMENT1
ART SAID THAT HE DOESN'T HAVE TIME FOR THE SURVEY***ALS COMMENT2

\section*{Appendix \(N\)}

NONPARTICIPANT REFUSAL COMMENTS

\section*{Appendix \(N\)}

NONPARTICIPANTS: REASONS FOR REFUSING THE SURVEY

The following pages present comments made by nonparticipants at the time they refused to participate. The comments begin on the top half of the page and, if necessary, continue on the bottom half of the page under the same observation (OBS) number.
Ms. Woo said she didn't have time to do a survey over the phone. S
        talked with Annete from NMPC, michael and gary own the building**RS
        now is not a good time for \(L\). to take the survey and there is no**
        TECH CALL NEEDS TO BE MADE IN THE AFTERNOON. SCREEN 4**JQS
        MS. ACUNA SAID SHE REALLY DOESN'T HAVE TIME TO COMPLETE SHE'S REALL
        MR WANG ANSWERED 3 QUESTIONS, THEN HE SAID THAT HE DIDN'T WANT**MJP
        CEO Deborah Tarbat refused DCOMP**JRJ
        THE SEC. TREASURER WAS NO HELP AT ALL HE EVENTUALLY REFUSED TO ANSW
        REFUSED BY MR HARM**JQS
        Walt Hoefler went through all of decis. questions, and then**BAC
        SEE SC2**CLK
        This may be a 40 , but we should talk to Bill Diman to be sure.**JRJ
        refused**MJP
        REBECCA THE RECEPTIONIST WAS KIND ENOUGH TO TRY TO ANSWER OUR QUEST
        modified field more than twice therefore didn't skip appropriately.
        started w\Vijay, got to sc 66. got cut off there
        Dave said lighting ques.needs to be directed to the landlord....**M
        went through some of the survey then refused to finish**LMT
        Mark (see screen 2) did not want us to continue survey.**BAC
        Got to sc. 87 with Mike before he said the survey was a waste of**J
        Jerry Swenson said, "It's terrible that you don't do this by mail.*
        Evelyn at corp. office said they were not interested.**JCM
        Did not complete lighting and technical. Was pretty impatient.**CL
        STARTED DOING SURVEY AND THEN SIS. KATHLEEN EXPLAINED THAT THEY DO*
        Very nice man who wanted to help, but he is under a lot of pressure
COMMENT2
    She requested a hard copy but did not want anyone to call back.**RS
better time.**
DECISION MAKER ETHAN ALLEN REFUSED TO PARTICIPATE.**JQS
Y BUSY STOPPED ON SCR\#53**RRF
TO PARTICIPATE.---REFUSAL---**MJP
at (209) 472-3465 for D/M. Left 800\# for them to call.**JCM
ER B/C HE THOUGHT WE WERE TRYING TO SELL HIM A SERVICE.
**JQS
decided he had enough information.**BAC
LADY REFUSED, BUT IT WOULD'VE BEEN A \#40 ANYWAY.**CLK
Maries' answers prompted a 40 , but when Mr. Diman confirmed them**J
IONS, BUT SHE WAS NOT THE DECISION MAKER AND THE OWNER WAS NOT (SC2
.did not \(\mathrm{c} / \mathrm{b}\) for a third time to prevent upsetting Richard***MYT
*
Landlord is "an unusual fella" and so dave said they have to pass**
time.**JCM
I'm not interested." Partial, because Betty Souza did Ltg.**JCM
**CLK
NOT HAVE ANYTHING TO DO W/SCHOOL THE SIS. LIVE AT THIS ADDRESS SCR2
and could not find the time. We got to screen 17 and had to stop.

COMMENT1
Was referred to Vuth at the corr. phone \# by Barbara at original**R Pam did LCOMP but referred us to the building owner who is the Jim terminated call @ SC69 saying survey was too long**JRJ
Mr Sambuceti was somewhat cooperative, but refused to answer ques-* Got through SC40, but Mr. Burns said he'd given us all the time he* Barbara wanted to know why we didn't have "info in our files"**REJ stopped at sc59**JRJ I contacted Mrs. Brooks, she was able to answer some questions but* Called 7/18; afternoon.Did a partial/refused, but lost data due to* Rich is the Manager.
D.F. said that since we were calling lots of people he would prefer Tim informed that he was swamped and didn't have the time.
Business is being sold.**SGW
She didn't have the time to participate and the company is moving.
We are very busy and wouldn't have the time to take part in the sur Not interested in doing survey. Refusal.
WANTED TO HELP BUT IS TOO BUSY**JQS
Secretary said Mr. Roberts is in process of selling business and**B FINALLY REACHED MR COLLINS, FOUND OUT THEY HAVE CHANGED THEIR LIGHT NOT INTERESTED SECRETARY SAID HE WAS NOT AVAILABLE, TRY BACK AT ANOTHER TIME* Woman who answered did not really understand me, and did not**BAC REFUSED**CLK
Janet said the company was too small to benefit from PG\&E programs* H.P. said he was entirely too busy to participate in any surveys.** Claims that he told previous interviewer he was not interested,**RE

COMMENT2
number. Neither one seemed to know anything, and Vuth wanted F10** PREVIOUS owner of the business (as of april), but he won't talk**JR
tions about Decisions or technical questions. was willing to**JRJ She didn't want to continue Stopped @ sc 33**REJ
not all, the person to contact is Mr. Harper.**KAR
CATI crash**JRJ
if we got the information from someone else.**RSD
vey.
**REZ
**JQS
building. There is no good time where I could talk to him.**BAC
S SINCE 92 BUT HE DID NOT WANT TO MAKE THE TIME FOR THE SURVEY**JQS Brian will have no time, nobody else can answer Q's.**BAC
know who \(I\) should talk to.**BAC
so she did not want to participate in the survey.**RSD
but I doubt that... Sounds like he just didn't want to do it.**REZ

COMMENT1
Recept says her company already did this survey a few weeks ago,**B Gale did not give a reason for refusal; she just said she wasn't**R LANGUAGE BARRIER, CLIENT DOES NOT SPEAK ENGLISH**JGP TOO BUSY, NOT INTERESTED**JQS WILL IS DEAD, AND MANAGER SAID "NO" TO SURVEY.**JRC
Steve Remmington told me that he did not have time to answer**BAC
OLINDA WAS NOT IN; ROBERTO SAID HE DID NOT HAVE THE TIME TO TAKE**J
THE WOMAN WHO ANSWERED THE PHONE WAS TOTALLY CLUELESS. SHE DIDN'T**
SPOKE WITH THE OFFICE MANAGER. HE WAS NOT INTERESTED IN TAKING PAR
"Yes, I'm the person but I don't have time to answer the questions"
no reason for refusal given.**RSD
refused**JGP
Mr. Martin's time is worth 250-300\$ per hour and it is ridiculous**
NOT INTERESTED SINCE IT DOES NOT DIRECTLY SAVE THEM MONEY**JQS
Olivia could not answer the questions and could not give the names*
mr. marks CHOSE TO DECLINE THE SURVEY.**DSH
she stated that she runs a daycare and will never have time for
RESPONDENT DIDN'T HAVE TIME**JQS
Ms. Lau was on her way out the door. She didn't think it would be*
DIANA IS OUT OF THE OFFICE ALL WEEK AND THE OFFICE IS TOO BUSY TO**
call back later; Sharon is on another line**LMC She did another sur
jon stated that he really didn't have any time for this. but he sai
AFTER 6 RINGS A SULLEN WOMAN ANSWERED AND WHEN TOLD IT WAS A PG\&E**
office manager**
**DSH

COMMENT2
At any rate, refused to answer questions.**BAC
interested.**RSD
any questions, but "thank you"**BAC
PART IN A SURVEY OVER THE PHONE**JQS
OF ANYBODY WHO COULD HELP US.**MJP
T IN THE SURVEY NOR REFERRING IT TO ANYONE ELSE THERE.**JQS
to expect him to do a survey over the phone.**RSD
of any contacts.**RSD
this, and ended the call
worth it for her to participate in survey. Politely refused.**REZ
HAVE TIME FOR THE SURVEY**JQS
vey a while back and is not going to waste a further 20 minutes now
d it in a polite way.
SURVEY, SAID "OH FORGET IT"**JQS
OVER THE WEEKEND, SHE WAS FIRED. RESPONDENT REFUSED TO TAKE PART**
He said that he DIDN'T WANT TO PARTICIPATE. ***DSH
```

COMMENT1
Spoke to a woman who was VERY defensive toward PG\&E. Had all kinds
Spoke to a man who said he did not want to spend the time on the**R
MR. BORTON stated that he didn't have time and just ended the call.*DSH**D
Didn't want to take part in survey because office is very small and
1ST \# DOES NOT COVER LOCATION IN SAN JOSE. AT 2ND \#, THEY WERE BUS
Debra said "we don't participate in telephone surveys. Thank you**
REFUSED**CLK
REFUSED.**CLK
NOT INTERESTED AT THIS TIME IN PARTICIPATING**RRF
Recept says call Irene, office coordinator.**BB She said she was no
TOO BUSY. TAMMY SAID THEY WOULDN'T HAVE ANY TIME FOR AT LEAST A**J
secretary said mr. Redy wouldn't have time.
this is mr. yu home \#; does not wish to participate**CLK**CLK
Amy said she didn't have the time**REJ
SPOKE WITH A NOT INTERESTED LADY WHO WOULDN'T HARDLY LET ME EXPLAIN BE-F
"DON'T HAVE TIME FOR THIS, THANK YOU"**JQS
Ended the call before I could explain.**RSD
Mr. Vu'duc just said he would pass on this survey.**RSD
suman \& starr**CLK
Refused.**MJP
MS. LEVINSON WAS BUSY W/ A CLIENT SPOKE TO WALTER WHO SAID THAT THE
A "one-girl office", and she is 'way too busy to help...**SGW
LADY SAID SHE DOESN'T HAVE TIME TO SPEND 15MIN. DOING A TEL. INTER-
Rosalee does not wish to participate in a survey.**RSD
REFUSED.**CLK
COMMENT2
of questions about the survey before deciding for herself (F10)**RE
survey right now. He ended the call before I could arrange a C/B.**REZ
would be of no use.
Y AND I WAS TOLD TO TRY IN THE AFTERNOON**JQS
very much." Then she ended the call***MYT
t decision contact and did not want to indicate who might be the co
COUPLE OF WEEKS**JQS
**REJ
ORE SHE SAID SHE WASN'T INTERESTED AND ended the call**RRF
**RSD
REFUSED.**CLK
Y ARE A SMALL CO. AND THEY DON'T THINK THEY ARE INTERSTED**RRF
VIEW**RRF

```

COMMENT1
receptionist was polite but did not want to give out contact info-* HE'S VERY BUSY. HE SUGGESTED AFTERNOON BUT IS MOST LIKELY TO DO IT Phil said that "we are three or four levels down in the chain of**R She says they are very busy and would not have time for the survey. He said he'd rather not participate in the survey. Small company.** "It wouldn't be pertinent because I split the bill or something**BA DO NOT CALL THIS COMPANY**BAC
use correct ph \#. this is prestige properties**REJ The recep said**
spoke \(w \backslash\) Cami, who asked for \(a c \backslash b\) for the end of the day.
spoke w w Rachel Rodriguez, who wants a hard copy**REJ
spoke \(w \backslash\) Michael, and he said they are moving \(w \backslash i n\) two weeks,**REJ
"Billy" said that building engineer was always very busy and she**
The bevanda company**MYT
MR WILSON IS TOO BUSY TO ANSWER QUESTIONS AND NO ONE ELSE HAS THE**
spoke w \(\backslash\) Jocelyne Chute who said she was TOO BUSY to help out.
MARY SAID THAT WE WOULD HAVE TO SPEAK TO PROP. MANAGEMENT CO. TRIED
REFUSED.**KAR
dir asst 415 code gave me 415-957-1622; refused***CLK
Emily Palmer apologizes not having the time to answer survey questi
REFUSAL.**KAR
REFUSED -- THEY MANAGE MANY LARGE OFC BUILDINGS \& HAVE REG REP TO**
Radio Station KGST.Mr Crotty refeused the survey because they**JRJ
Finally talked to Barbara, but she claims they have hundreds of
THEIR OLD BUILDING BURNT DOWN. SO SHE DIDN'T FEEL IT WAS NECESARY**
refused.**KAR

COMMENT2
```

**RSD

```
BIT BY BIT.**JQS DECIDED HE DID NOT HAVE TIME TO COMMIT**JQS
command on this property, we won't be able to answer questions."**R
like that" In other words, Don't call back**BAC
"we have had this interview atleast a couple of times"**MYT
"I don't have the time."
wouldn't be time effective to do survey**REJ
knows he doesn't want to do a survey.**
they are not interested***MYT
KNOWLEDGE**JQS
***REJ
TO GET NAME AND \# OF PERSON AND SHE SAID SHE COULDN'T GIVE THAT OUT
ons and would prefer if no one calls back.**KAR
HANDLE ALL PGE COMMUNICATIONS**LMC
lease and have no control of the lighting equipment. GOTO SC2**JRJ
heating/cooling units and it would take thousands of hours of (F10)
TO ANSWER OUR QUESTIONS.**MJP

COMMENT1
```

1st \# is for the Ventura Co. Sherrif's dept.**REJ
Person on ph wanted a hard copy, then he changed his mind when
refused nicely
THIS MAN WAS SOOO BUSY THAT HE COULD HARDLY TAKE THE TIME TO TELL**
REFUSAL.**CLK
REFUSED.**KAR
CURRENTLY UNDERGOING A PG\&E AUDIT SO FELT NO NEED TO PARTICIPATE IN
Jerry Burgess refused politely**LMC
David Shallenberger is their chief engineer, says he's done such a
REFUSED**KAR
REFUSED.**KAR
A series of run-arounds culminating in refusal by property mngr**JR
OOPS. Failed to not the 6. Fortunately I did not reach anyone thi
REFUSED.**KAR
NORMA IS ON VACATION AND THEY DON'T KNOW WHEN SHE'S GETTING BACK.**
REFUSED
REFUSAL.**KAR
REFUSED**MJP
sec said that mgr was not interested in taking a survey**KAY
REFUSED.**MYT
person on ph said that they "have everything, retrofitted lights,
REFUSED.**KAR
arthur said that he wasn't interested in answering any questions**K
not interested to do the survey***MYT
REFUSED.**KAR
COMMENT2
Receptionist said "We don't answer any questions over ph."**REJ
he realized it wouldn't come direct from PG\&E***REJ
ME NO.**MJP
**CLK
THIS STUDY**JQS
**LMC
survey, just in the last month or so...
Ed Lau, saying, "we don' 'ave nothing to ask"**JRJ
s call.**JRJ
SOUNDS LIKE A MAJOR BLOW-OFF TO ME, BUT TRY BACK LATER IN THE WEEK.
**MJP
**MYT
energy saving stuff, everything"

```

OBS
```

1 5 1

```
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
OBS
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
COMMENT1
```

see sc2***CLK
KEN WILSON'S SECRETARY FREAKED ON ME. SHE ASKED WHO I WAS WITH,THEN
Thought that it would be a waste of our time and of their time**REZ
REFUSAL**KAR
sec said that no one in that office wants to take the time to**KAY
THE WOMAN WAS NICE, BUT SHE HAD TO REFUSE. WHEN SHE ANSWERED THE**M
refused politely -- no time -- not sure if they retrofitted since
RECEPTIONIST WAS VERY UNCOOPERATIVE, AND RELUCTANT TO GIVE ANY**REJ
REFUSED, THEY ARE TOO BUSY TO ANSWER OUR QUESTIONS.**MJP
REFUSED.**KAR
Mike says they wouldn't be interested in doing any surveys.Nobody h
WHEN I TOLD THE SECRETARY WHAT I WAS DOING, SHE SAID THAT THERE WAS
Mr. Haymond said that he just does not have the time to do this**MY
receptioninst said contact wouldn't want to participate in survey**
"I don't have the time"**JRJ
Company just been purchased. Knowledgeable people there too busy.**
THE ONLY PERSON WHO CAN ANSWER THESE QUESTIONS IS THE OWNER.**MJP
WHEN I EXPLAINED WHAT WE WERE ABOUT, HE SAID "NO NOT REALLY."**MJP
REFUSED.**RSD
THEY WERE INTERESTED IN A WRITTEN SURVEY, BUT THEY WEREN'T**MJP
REFUSED. SHE WAS NICE ABOUT IT, BUT SHE DOESN'T HAVE THE TIME.**MJP
I EXPLAINED OUR SURVEY, AND THE RECEPTIONIST SAID WE WOULD HAVE TO
REFUSAL.**KAR
spoke w\Bert, who said "I really hate questions, you know that?
REFUSED**MJP
COMMENT2
A BLATENT REFUSAL.**CLK
SHE WOULDN'T TELL ME WHEN HE WAS GOING TO BE BACK IN HIS OFFICE.**M
to talk to them. Politely refused.**REZ
answer questions, then she ended the call**KAY
PHONE SHE SAID "DENTIST'S OFFICE" SO MAYBE IT WASN'T WHO WE WANTED*
1992
TYPE OF INFORMATION**REJ
**MJP
as time for that.**JRJ
NOBODY WHO COULD ANSWER OUR QUESTIONS.**MJP
now..and he has done surveys for PG\&E before...no thanks***MYT
**BB
THE RECEPTIONIST SAID THAT IT WON'T HAPPEN.**MJP
THEN HE ended the call.**MJP
INTERESTED IN THE FOLLOW-UP VISIT.**MJP
SPEAK WITH THEIR ARCHITECT. NOBODY KNEW WHO THAT WOULD BE.
I really hate when people call me \& ask oddball questions."

```
```

WHEN I TOLD THE RECEPTIONIST WHO I WAS AND WHAT THE CALL WAS**MJP

```
REFUSED.**KAR
THE WOMAN I SPOKE WITH WAS QUITE NOT INTERESTED.**MJP
REFUSED.**MJP
Mr. Ragsdale was not able to complete the survey, however he was ve
Nancy Nelson said, "this is the 3rd time someone has called...not**M
THE WOMAN I SPOKE WITH SAID THAT SHE HAD JUST HAD AN ONSITE FROM**M
The American Cancer Society will be moving their office in one week
Richard Smith said "I do not want to give out our priavte records"*
Lisa said she was not interested in participating in this survey***
BARBARA SAID THAT ALL THE INFO WAS AVAILABLE FROM THE BLDG. OWNER.*
REFUSED.**MJP
THEY WEREN'T INTERESTED**MJP
Roxanne said "we are going through a merger, I am not one to talk**
I WAS TRANSFERRED TO 3 DIFFERENT PEOPLE, NOT ONE OF THEM UNDERSTOOD
REFUSED.**RSD
DONNA WAS VERY BUSY AND WOULDN'T HAVE TIME TO ANSWER ANY QUESTIONS.
Les said "I'm not interested" before I could say anything beyond my
THE RECEPTIONIST SAID THAT THE BUILDING MNGT. CO. COULD ANSWER OUR*
DON IS VERY BUY AND WILL PROBABLY NOT HAVE TIME TO DO OUR SURVEY.**
Was hung-up on even before \(I\) could fully explain that it was a
THE SECRETARY WAS AN UNCOOPERATIVE PERSON. REFUSED.**MJP
Shirley said that they are busy right now and won't be able to help
THE MAN WHO ANSWERED SAID THAT WE WOULD HAVE TO SPEAK W/ THE MNGT.*
said that they were not interested in doing a survey \& ended the call**KAY
COMMENT2
REGARDING SHE SENT ME TO LYNN'S VOICE MAIL. I THINK IT'S A BLOW OFF
ry nice in assuring me he was not able to.**KAR
sure if it's ur company...but enough already***MYT
PG\&E. SHE SAID THEY LOOKED AT LIGHT FIXTURES ETC.**MJP
, so at the present time their is no one available to answer questi
**MYT**MYT
***MYT
BARBARA WOULDN'T GIVE US THE OWNER'S \#. SHE WAS NOT INTERESTED.**MJP
to..don't know who to talk to"***MYT
WHAT INFO. I NEEDED. LADY \#3 SAID THEY WEREN'T INTERESTED.**MJP
SHE WAS VERY ABRUPT, BUT I FOUND OUT THAT THEY ARE A 40 ANYWAY.**MJ
name..he said thanks then ended the call.***MYT
QUESTIONS. HE WAS BUSY AND DIDN'T GIVE ME THE MNGT CO'S \#.**MJP
**MJP
survey...
in this survey...***MYT
CO. ONE PROBLEM-HE DOSEN'T KNOW WHO THEY ARE.**MJP
```

REFUSED.**RSD
HE SAID THAT HE WAS THE ONLY PERSON AT THE BUILDING AND THAT HE**MJ
Donna said "I don't have time right now but we do appreciate your**
He is the knowledgeable contact but is too busy to do the survey.**
Ms. Roper did not seem thrilled about spending time answering
REFUSED.**CLK
Ken told me he already talked to somebody about this. DON't**BAC
" Y'KNOW WE REALLY CAN'T DO ANY TYPE OF SURVEY" AKA REFUSED.**MJP
John Doesn't feel that this is straight forward enough..doesn't**MY
REFUSED.**LMC
MS.CASELLI SAID SHE WOULDN'T BE INTERESTED IN PARTICIPATING IN SURV
Will not have the time to take place in the survey.
SAID HE'S NOT INTERESTED IN PARTICIPATING BECAUSE HE'S ALWAYS BUSY.
Refused saying they have very strict rules about giving out any**JR
MS. GEE SAID SHE REALLY DOESN'T HAVE TIME TO DO THIS SHE'S PRETTY B
Was hung-up on as soon as I could say I was calling on behalf of**R
NOT IMTERESTED. ended the call**LIT
don't do surveys over the phone**LMC
After several attempts to contact, finally reached Marty (female)
CATHY SAID SHE GENERALLY DON'T PARTICIPATE IN SURVEYS TAKES TOO MUC
she was very busy and reluctant, she didn't actually refuse...**LMC
Person said that she would not have time for a telephone survey.
refused**LMC
don't do surveys**LMC
Receptionist asked me to call back and speak to Lolita Pyonne.**LIT
COMMENT2
WOULDN'T HAVE THE TIME OR THE NECESARY INFORMATION.**MJP
calling" then ended the call.***MYT
a survey that would take 15 minutes of her time.
CALL BACK
want to give any info w/o a call from PG\&E first. refused***MYT
EY AT THIS TIME
information over the phone**JRJ
USY.**RRF
PG\&E. Wasted time with previous callbacks. Definite refusal.**REZ
and she told me they are not comfortable talking about the (F10)
H TIME**RRF
Dante says DO NOT CALL BACK.**REZ
Refusal.
**LMC
call around 3:00pm. out to lunch**LIT Lolita not interested.**LIT

```
```

Call any day except monday.**LIT

```
Was told that they would pass on this at this time.
Owner claimed he could only give me 2 minutes of time because he**R
did not want to participate.
Joe said " we are so small and so it doesn't matter anyways. I thi
"We're just a small Travel agency, try someone else..."
John Traverso died eight years ago.**JCM
I RECEIVED THEIR ANSWERING SERVICE SHE SAID WE HAVE TO C/B WITHIN**
Has zero time to do a "stupid survey that deals with something I do
said that someone already called them**LMT**LMT
Bob said, " I don't know what this is about...you are wasting my
SHE SAID THAT SHE DOES NOT HAVE ANYTIME THEY ARE CLOSING THE BUSINE
Ida wanted to know how this survey will benefit her...she seemed**M
did not want to take part during business hours**LMT
Mr. Song was very impatient and extremely not interested. He ended the call on me
SAID THAT SOMEONE ALREADY CALLED HER**LMT
Mr. Wong was not in but will be in tomorrow.**FH3
Guy said he didn't have time.**LIT
The number given to me by 411 was some lady who I did not understnd
BEFORE I HAD A CHANCE TO EXPLAIN TH LADY SAID THAT IF IT IS A SURVE
BEFORE I HAD A CHANCE TO EXPLAIN LADY SAID THAT THEY WERE NOT INTER
John said that the owner of the building is kind of wierd and does*
Refusal
said that he just will NEVER have the time to do the survey.**LMT
The guy could not speak english at all and when I asked for someone
COMMENT2
He did not want to do the survey.
is on the sales force... Was sorry he could not help. Refusal.**R
nk I'll just pass on this one"***MYT
THE OFFICE HOURS WHICH ARE FROM 7:30A-4PM**RRF info on next screen
nt give a hoot about".Nice guy eh?**LMT
time"****MYT
SS IN A WEEK**JMT
eager to hang up.. said thank you and *click* ***MYT
**JCM
I don't have any need to take part.
and then she ended the call on me.**BAC
Y THEY WERE NOT INTERESTED**JMT
ESTED AND ended the call
not wish to get involved w/ this..anyways...a refusal.***MYT
who spoke english he ended the call and said, "You no call here."**LMT

OBS

\section*{251}

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
OBS
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

COMMENT1
```

person on phone wouldn't give his name, and was hesitant to agree**
Rosa's Beauty Salon is name of business and Elba said they are in
Person ended the call after I read Intro.**LIT
GLENN SAID, "WE ARE NOT INTERESTED IN A SURVEY."**JRC
PERSON WHO ANSWERED THE PHONE WAS VERY
ED IS DEAD.ASK FOR WAYNE HE'S NOT DEAD**LMT
Grigor is NOT interested.
DIDN'T WANT TO DO IT, SAID, "GOODBYE."**JRC
Was Not interested onthe phone**LMT
Did not want to participate**LMT
DBA: Universal Electrics (?) Mr. Chu said that he won't be able to*
Nina said, " that's ok, NO" then ended the call***MYT
Did not want to participate.**LMT
Mr. Leybin said "it's not my building so I don't know" therefore a*
Reached a Barber shop. Person not interested.**LIT
Person said no thank-you and ended the call. I don't think he understood a
DO NOT CALL. PER SUPERVISORS.**LMT
the woman who answered the phone said" we rather not participate"**
SECRETARY TOOK 800\# AND SAID HE WOULD MOST LIKELY NOT TAKE PART IN*
was very anxious to get off the phone**LMT
I reached Rudy's answering machine.**LIT
could not speak english**LMT
Dana Freeze said she had to go and ended the call abruptly.**LIT
DBA: Vision Gallery..the receptionist said that they don't have the
ask for Silva ***MYT Silva said she does not have time for this***
COMMENT2
to anwering other questions**REJ
the middle of selling the place and doesn't wish to do survey now.
guy was not too happy on this survey stuff**LMT
participate in this survey at this time..therefore refusal***MYT
**MYT
refusal***MYT
nything I said.**LIT
then hung up***MYT
THE SURVEY SO DON'T CALL BACK**JQS
SPOKE TO RALPH GLINSEK, HE WAS NOT INTERESTED IN TAKING PART**JQS
time to do this now...don't c/b***MYT
MYT and she couldn't answer the qualifier questionMYT

```
    JIM SAID HE'S NOT INTERESTED AND ended the call**RRF
    She just gave me some response and ended the call on me.**BAC
    Manager said that he won't have 15 min . to spare and doesn't want
    I had trouble understanding Henry, but he told me to talk to**BAC
    LES claimed that someone else had already called and asked him a**M
    Man who answered said he had no idea who could answer questions**BA
    MS. STEVENS STATED THAT IT WOULD BE NO PURPOSE TO THIS SEEING AS
    This man only wanted to answer questions if it were to his benefit,
    "We're not interested in this kind of stuff"**BAC
    "No we're a business, that's OK", than he ended the call...**BAC
    Monica said she was very busy and did not have time to answer**BAC
    SPOKE W\MIKE,WHO SAID "I'M JUST REAL BUSY, \& IT'S HARD FOR**REJ
    RECEPTIONIST VERY UNCOOPERATIVE.
    Jim said I was probably the 5 th or 6 th person calling representing*
    Muriel was manager at the store, she did not want to answer**BAC
    HE STATED THAT HE' JUST TOO BUSY FOR THIS AND ended the call.**DSH
    THERESA SAID THAT THE PERSON WE NEED TO SPEAK TO IS MR.LAKIN IS THE
    see sc2***CLK
    Martha answered a couple of questions, then decided she was too**BA
    They are swamped w/ weddings so they can not do it at this time***M
    June said owner could answer questions, but she would not give**BAC
    WHEN I TOLD HIM THAT IT WOULD TAKE ABOUT 10 MINUTES, HE SAID THAT
    "I don't think anyone wants to bother with it." .**BAC
    I SPOKE W/MR.DUNKINS WHO IS MR. SCHOLES PARTNER AND HE SAID THAT HE
    I was told there was nobody that I could talk to
COMMENT2
a call back.**FH3
Mr. Zieo, landlord at (310) 928-0100, he didn't want to talkto me**
bunch of questions***MYT
THOUGH THEY ARE MOVING SHORTLY.
if PG\&E were going to cut his power in half**BAC
questions.**BAC
ME TO TAKE THE TIME TO DO THIS"**REJ
PG\&E but not actually PG\&E, "I'm not interested"....**BAC
questions**BAC
ONE TO TALK TO HE'S THE CONTROLLER, GO TO SCR. 2 FOR MORE INFO.**RR
busy to talk to me**BAC
***MYT
me his number**BAC
MAYBE WE SHOULD PASS HIM BY
APOLIGIZES BUT THEY JUST DON'T HAVE THE TIME TO PARTICIPATE**RRF

OBS
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
OBS
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
```

COMMENT1
THEY SAID THEY WERE NOT INTERESTED IN PARTICIPATING**RRF
VALLEY WEST REALTY SEE SC2 4 CB***CLK**CLK
master craft dry cleaning*clk**CLK
Mr. Seiler was tired of taking pg\&E surveys. He retrofitted**BAC
Just did a survey, last month...
Ron says, "This is a business, we have customers. We don't have**B
JANIE SAID "I KNOW NOTHING ABOUT IT."**REJ
C\B AND ASK FOR CORREIN, WHO SAID SHE'D TRY TO HELP**REJ
STEVE FELT THAT QUESTIONS, LIKE SCOOId shoud be submitted in**REJ**
Mike does not have the time if I am not directly from PG\&E**BAC
"Don't have time for this"**BAC
amber said "we are a retail store, very busy, thank you, bye"***MYT
NYT=MYT..typo...the woman who answered the phone said "not interest
THE PERSON WHO ANSWERED THE PHONE WAS NOT INTERESTED AND STATED THAT**DS
SAID THAT SHE'S GOING THROUGH A CONSTRUCTION AT THE TIME AND THERE
Kevin, upon reflection and a return call decided two minutes**BAC
They were not interested to do this survey***MYT
Tammy said "I don't have the physical time for this, I'm sorry."
Mr. Lang told me to call Michael's Art supplies at 421-1576, he**BA
"We're already on that special program." However it sounded**BAC
see sc2**CLK
joe wagner, the corporate head, said that he is way too busy to do*
PG\&E is on their premises now doing the EMS and Mr. Wardlow doesn't
said that he was too busy to do phone survey but will be willing to
Mr. Zart said that they are extremely busy now, they are a mail**MY
COMMENT2
CALLED MICKEY; ALREADY EVALUATED VISITED***CLK
not interested***MYT
the lights at his location, but would not take survey**BAC
an time"**BAC
**REJ
writing.***REJ**REJ
**BAC
ed.." then ended the call***NYT
THERE WAS NO ONE WHO COULD ANSWER ANY QUESTIONS AND ended the call.**DSH
WILL BE NO TIME SOON THAT SHE CAN TAKE AND ANSWER QUESTIONS
was all he could spare, w/ no better time to c/b. Polite, though**B
said he was not best person, but he did not want to talk to me*****
more like an excuse to get me off the phone**BAC
the survey**KAY
feel like doing this evaluation ***MYT
do a survey on paper**KAY
order business and won't be able to help out***MYT

```
```

Was informed that they are in very close contact with their PG\&E
Secretary did not seem too keen on us contacting Ben.**RSD
Norman does not participate in surveys in general. Told me not to*
Was referred from one person to another throughout company, before
Jeff referred me back to San Jose store, which referred me back to*
did not have the time to help; refused politely
JACK BEGAN TO DO SURVEY, THEN HE SAID, "THAT'S ENOUGH, I DON'T**JRC
Jon said, "I'm not interested, thanks," and ended the call.**JCM
Sayeth Jeff, "Anybody who would sit on the phone for 10 or 15 minut
Mark Tavarez said PG\&E did the same sort of thing a year ago, and**
I spoke to a woman who said, "This is a pay phone. We're not inter-
see sc 2**CCL
Greg said that someone already called him, so either it is a**BAC
EXT. 10**RSD
Refused saying"we've already replaced our lights and done a survey
I really don't have time for that. I'm in the middle of selling**J
see sc 2***CLK
Recept. quickly refused to participate**BAC
Mgr didn't want to give out much info, we started the survey \& afte
PAT JUST DOESN'T HAVE TIME TO DO THE SURVEY**JRC
The man I spoke to said, "We'll do it through the mail, but not**JC
the receptionist said " I answer 6 lines here and I can't help you,
Mgr said she doesn't have that much time to use the phone for a***
The woman who answered the phone had no idea who I can talk to and
Genie does not have time to do a survey over the phone for 15 min.
COMMENT2
account rep. and that they do not have time for a survey.
take it personally.**RSD
finally coming full circle. They claim they really don't have >F10
Cathy Roland at corporate office, who finally refused.**RSD
WANT TO DO ANYMORE.**JRC
es for a survey I wouldn't want working for me. Goodbye"**JRJ
he wasn't interested.**JCM
ested."**JCM
refusal or something else.**BAC
on that"
the dealership and I have about 30 people to deal with right away**
**CLK
r a few questions, he didn't want to continue**KAY**KAY
**JRC
over the phone."**JCM
I am sorry" then ended the call***MYT
survey**KAY
wasn't willing to give me a name nor number that I can call*
She is the assistant manager.

```

COMMENT1
didn't see the first result before dialing this number***MYT Greg said that it would be a waste of time to do survey w/him**KAY* REFUSED.**CLK
"I don' tink we need to do that; we, uh, jus change everyting"**JRJ Agatha, the mgr, said that she didn't have the time, she cut me off Doesn't want to disclose any information regarding the company**KAY Sandy is the contact, but she is very busy, but keep trying**BAC politely declined**JRJ
Bob Holman said he has no time and he would regrettably have to**JC Fran, the office mgr, said that they don't answer any questions on* L.A. said that 15 minutes was too long for a phone survey.**RSD Spoke w/mgr \& she said that they really don't participate in any**K Roger "wouldn't be interested" .**BAC
Mgr said that she was not interested in answering any questions**KA B. participated a few months ago and doesn't feel like participatin Jeff is the controller,but he said that he never participates in*KA She said, "I'm not interested" and ended the call**JRJ SPOLKE WITH MR. SCOTT HE SAID THAT AT THIS POINT IN TIME THEY ARE Jim said he is much too busy to do a 15 minute survey.**RSD i started my greeting but before i could say what i was calling mr. johnson said that they're moving in may so there really was no ANTOINE WANTED A HARD COPY OF SURVEY. I SAID OK BUT THAT WE WOULD REFUSED NICELY -- BUSY**LMC Jeff Downs called our 800\#. Said he couldn't do the survey bec.**D The man I talked to said that the office at the school was closed**

COMMENT2
before I had a chance to explain**KAY
WON'T HAVE TIME UNTIL AFTER 8/15**JQS
pass on this survey.**JCM
the phone at all**KAY
kind of survey**KAY**KAY
again.**RSD
telephone surveys**KAY
COMPLETELY SWAMED THEY HAVE NO TIME TO SPEND ON THE PHONE**JMT
about she stated that she dosen't want to deal with(see scr.2)
point in this survey
HAVE TO CALL HIM BACK TO DO ORAL SURVEY AND HE SAID HE HAD NO TIME
he only has a pager, no regular phone. Coded refused.DRN--SUPVSR**D
and that there was no one there to answer our questions.**MJP
```

SAID THAT HE HAD BETTER THINGS TO DO THAN SIT AND ANSWER QUESTIONS*
Fae said that she has customers to tend to and that it's probably**
Dan said "I don't have time for this. Thank you." and then he**REZ
Too busy. If we wanted to stop by and talk to him, it would be
the woman who answered the phone said that she doesn't know who we*
Mrs. Thomas said " we have been here for forty years and we don't**
"No thank you... I pass." Refusal.***REZ
Yong Lee said he couldn't understand why we didn't do this on paper
The recept pretended like Katie was busy, after answering a**BAC
paul mazzella is always really busy**JGP
Respondent did not want to have a supervisor listening in... He
SMALL BUSINESS, NOT INTERESTED IN DEALING WITH THIS.**JGP
WORKS ALONE, DOES NOT HAVE THE TIME**JGP
Carolin says she's trying to do taxes right now and won't have the*
Ms. Frye said that there is really no good time to do a survey**MYT
SPOKE TO BOB HE STATED THAT HE'S IN RETAIL AND WILL NEVER HAVE ANY
Kathy says talk to Jerry**JRJ Jerry says he can't spare 10 minutes*
Advised not to call back. These people do not like PG\&E to put it*
**JGP
Mr. Flood is in the process of settling a monetary dispute with
Claudio Lane Sr. said that he'll have to pass ..refused***MYT
Robert said, "I think I'm not inclined to take this survey."
accidental login**JRJ
not interested**JGP
polite (but firm) declination**JRJ
COMMENT2
OVER THE PHONE.**DSH
better to forget her survey***MYT
promptly ended the call. I'd guess this is a refusal.**REZ
better... Refusal.***REZ
are and have done other PG\&E evaluations before; "not interested"**
need any of that, thanks" then ended the call*
and he said he didn't want to continue.**JCM
couple of questions, told me we could not finish**BAC
hung on the phone before I could continue.

```
time. I guess it's a refusal, since she ended the call while I was F10**R
\(\mathrm{b} / \mathrm{c}\) she was in the store alone***MYT
TIME. BUT HE SAID IT IN A POLITE WAY
for a survey**JRJ
mildly. Refusal.**REZ
PG\&E so he isn't really willing to do this for them at this time*
Just got to SC21 before she refused to go on.Very busy**JRJ

COMMENT1
```

Bub said that they are pretty happy with everything but like to**MY

```
does not have time**JGP
SAID HE'S TOO BUSY, AND HE ended the call.**JRC
The woman who answered the phone said that she doesn't know anythin
no time -- nicely refused
this is a bar, he's got to take care of business, thus, he cannot**
no time for phone survey; refused nicely**LMC
Doris said, "we're not interested" and ended the call.***MYT
extremely busy; very small restaurant; very nicely refused survey**
Person on phone said "No thankyou during opening paragraph and hung
no, thank you**JGP
Carl Mohrmann is passed away. Agnes does not wish to be called**JCM
Leticia said she'll never have fifteen or twenty minutes for a**JCM
RICHARD HAD NO TIME, DID PART OF SURVEY AND HAD TO STOP**JRC
Leticia said she just didn't have the \(10-15 \mathrm{~min}\). necessary**REJ**RE
THEY ARE GOING OUT OF BUSINESS**JGP
Christine had left the building. She may be availiable again**REJ
SEC WOULD NOT PUT ME THROUGH TO HIM SHE SAID THAT HE IS ABOUT TO RE
BEFORE I HAD A CHANCE TO EXPLAIN MUCH HE SAID THAT HE WAS NOT INTER
SPOKE TO VICTOR COLER AND HE SAID THAT HE IS NOT INTERESTED AND NEV
MICHELLE SPOKE WITH THE DOCTOR AND HE SAID THAT THIS DOES NOT SOUND
DR. SCOTTON SAID THAT THIS LINE IS OPEN FOR ONLY HIS PATIENTS AND H
THE LADY DIDN'T EVEN LET ME EXPLAIN SHE JUST SAID THAT SHE WAS NOT
BEFORE I HAD A CHANCE TO REALLY SAY MUCH HE SAID THAT HE WAS NOT IN
HE SAID THAT HE JUST DOES NOT WANT TO SPEND ANY TIME ON TELEPHONE
COMMENT2
pass on this survey..John Sr. is only there weekend mornings***MYT
g, she said thank you and then ended the call**
speak to me**JGP
up**JRJ
back.**JCM
survey.**JCM
WHEN ASKED FOR A BETTER TIME, SAID HE DIDN'T HAVE ONE.**JRC
for the survey**REJ
@ the above date.**REJ Christine did not want to take survey**BAC
TIRE AND WOULD NOT BE INTERESTED.**JMT
ESTED AND HUNG THE PHONE UP**JMT
ER HAS ANY TIME TO SPEND ON THE PHONE**JMT
LIKE SOMETHING HE WOULD BE INTERESTED IN**JMT
E DOES NOT HAVE ANOTHER LINE SO DO NOT CALL ANY MORE**JMT
INTERESTED**JMT
TERESTED AND HUNG THE PHONE UP**JMT
SURVEY**JMT
```

BEFORE I HAD A CHANCE TO SAY WHAT I WAS CALLING FOR SHE SAID THAT S

```
THE PERSON I SPOKE WITH SAID THAT HE CHOOSES NOT TO DO PHONE SURVEY
BEFORE I HAD A CHANCE TO EXPLAIN VERY MUCH SECRETARY SAID THAT THEY
SPOKE WITH RICHARD HE DID NOT REALLY UNDERSTAND WHAT I WAS SAYING I
CINDY SAID THAT THEY DON'T HAVE ANY TIME FOR THIS**DSH
HE SAID THAT HE DOES NOT HAVE ANYTIME RIGHT NOW AND HE DOES NOT WAN
BEFORE I COULD FINISH SHE SAID THAT SHE DOES NOT HAVE ANY TIME TO
TRIED TO EXPLAIN PROGRAM BUT SHE ACTED AS THOUGH SHE DIDN'T UNDER-
person on ph wasn't intersted in survey**REJ
spoke w \(\backslash\) Jill Jacobs, who didn't have time for survey**REJ
spoke \(w \backslash\) Nancy Finch, who said they pay for power through rent, \&
\(c \backslash b\) \& ask for Linda Taylor or Mr. Ohaver**REJ
person on ph didn't know about power usage, \& didn't know**REJ
VERY HOSTILE, ASKED FOR HARD COPY, BUT REFUSED TO CONFIRM**REJ
sec said that they don't have anyone who can answer questions. she
did not want to disclose information w/organization that they are**
ignore sc 156, the person on the ph "Ben" refused to share his last
Sharon said "I'm swamped, I just don't have the time for a survey,
said that they just don't have time to do any survey**KAY
"WE DON'T HAVE TIME FOR THIS...."
spoke w w Dorothy, who said "I don't know why all this is necessary**
refused nicely**LMC
Polite refusal
"We wouldn't have time to take a survey"**JRJ
does not want to participate in a survey.**LMT
COMMENT2
HE DOES NOT HAVE ANY TIME AND SHE IS NOT INTERESTED.**JMT
S**JMT
WERE NOT INTERESTED AND HUNG THE PHONE UP**JMT
EXPLAINED EVERYTHING THOROWLY BUT HE IS NOT INTERESTED**JMT
**DSH
T US TO CALL HIM BACK**JMT
TALK AND HUNG THE PHONE UP**JMT
STAND
landlord is impossible to reach***REJ
linda siad that she didn't have time for this \& then ended the call**KAY
\# of property management firm**REJ
ADDRESS. IGNORE SC 156 SAID GLORIA**REJ
was not very helpful when \(i\) asked her to find another contact**KAY
not aware of, so they refused**KAY
name, and was very sarcastic
I'm sorry."
SAID THE RECEPTIONIST**REJ
for \(P G \& E\), all they want to to is charge us for \(k w \backslash h . " * * R E J\)
no time**LMC
The Embassy; Might try to talk to Gaston, but George, there refused
Was very irate on the telephone.**LMT
Fred is NOT INTERESTED. Its a "waste of time".
"No time."
refused politely; too busy
The man who answered the call said "I'm on another line now, we app
Stan said that they are in the process of moving to a different**MY
Refused
Shelly (manager) said " I don't have time for this now" then HUNG**
Mr. Agnetti said, "no, I don't think so" and then ended the call***MYT
the receptionist said that they do not give out names..and in this*
The man who answered the phone said that the lighting is taken care
DID NOT PARTICIPATE IN PROGRAM, AND WOULD LIKE TO KEEP IT THAT WAY*
NOT INTERESTED**JGP
DOES NOT HAVE THE TIME**JGP
Recpt. said "She's already worked with PG\&E to save money on her
Dave (district mgr) said that they just did a PG\&E survey last**MYT
The receptionist said that the only person who can answer the ques*
every decision is made out of their Houston Office and the woman**M
Right now they are not interested in anything we have to say***MYT
Sharon said "We really don't have time to do this survey...our time
There is no one there knowledgeable about their energy usage there*
the recep said," this is a office and no one here would be interest
the woman who ans the phone said, "this is the busiest season of the
They are really busy in the summer so won't be able to answer any**
COMMENT2
```

reciate your call but we don't need anything now" and ended the call.***MY
location, he said thanks and then ended the call***MYT
UP.***MYT
**MYT
case they probably just can not participate in the survey***MYT
by the owner and he couldn't give me the name nor the phone\#***MYT
**JGP
bill, so thanks, but no thanks . { Refusal }
month and at this time he would rather not do this one***MYT
is really busy and wouldn't do a survey...but we can try to fax***M
who answered the phone would rather not give out that number***MYT
is valuable"***MYT
and there was no one that the recep. could refer me to***MYT
ed in doing any survey at this time"***MYT
yr and unless this is required by law, there's no one to answer***M
questions***MYT

```
```


[^0]: 1_{1} PG\&E Annual Summary Report on DSM Programs in 1994 and 1995.

[^1]: ${ }^{2}$ California Public Utilities Commission Decision 93-05-063, Revised January 1995 Pursuant to Decisions 94-05-063, 94-10-059, 9412-021, and 95-12-054.

[^2]: ${ }^{1}$ Advice Filing 1800-G-A/1446-E-A.
 2 For a detailed description of the allocation of each of these sample types by technology and building type refer to Appendix A, pages A-1-A-18.

[^3]: ${ }^{3}$ The energy and demand engineering models are discussed in more detail in Appendix B, pages B-1-B-25.

[^4]: ${ }^{4}$ Robert A Rundquist, Karl Johnson, and Donald Aumann. "Calculating Lighting and HVAC Interactions," ASHRAE Journal, November 1993.

[^5]: ${ }^{5}$ Ibid.
 ${ }^{6}$ The "PG\&E Measure Code" used to define measures for both programs is also known as the "Action Code" in the MDSS system.

[^6]: 7 Annual Summary Report on Demand Side Management Programs in 1994 and 1995, Advice Filing 1800-G-A/1446-E-A.

[^7]: 8 Robert A Rundquist, Karl Johnson, and Donald Aumann. "Calculating Lighting and HVAC Interactions," ASHRAE Journal, November 1993.

[^8]: ${ }^{9}$ In the $A S H R A E$ Journal article referenced above, the regional cooling factor (RCF) is supplied in a table for selected major cities in the United States. The table reflects the number of annual cooling degree days in each region.

[^9]: ${ }^{10}$ As is the case for cooling, the regional heating factor is supplied in a table in the ASHRAE Journal article for selected major cities in the United States. The table reflects the number of annual heating degree days in each region.

[^10]: 11 A preliminary analysis has concluded that the monthly usage and bill read date information in these two datasets is consistent.

[^11]: 12 Accurate determination of the installation dates is very difficult because information in the MDSS database is inadequate. However, a best-effort estimate was implemented based upon the analysis of the inspection dates and check issue dates from the MDSS database, in combination with customers' selfreported installation dates.

[^12]: ${ }^{13}$ All years mentioned in the SAE analysis refer to a period covering the last quarter of the previous year, and the first nine months of the current year.

 14 This procedure is the econometric solution to this type of simultaneous equation system.

[^13]: ${ }^{15}$ In fact, 22 of the 84 customers who had lighting actions outside the program were classified as free drivers in the market analysis. The net billing data model was run with and without these customers

[^14]: 16 An average impact of 11.7 percent is calculated as the ratio between unadjusted engineering estimates and the annualized 1992 actual usage for all 480 participants in the analysis dataset.

 17 Given the number of variables planned to be included in the initial models, we felt the logistic regressions would be under-powered if they were run separately for each measure group. Using a rule of thumb of 20 observations per model variable, only the T-8 group ($\mathrm{N}=144$) could have supported its own logistic regression. Additionally, we believed that the behavioral model should hold for all purchase decisions, regardless of technology, since decision-making processes should be consistent across technologies.

[^15]: 18 Customers who accelerated a decision to retrofit were considered net participants.

[^16]: 19 Participant spillover effects were calculated as percentage reductions multiplied times the average post-program annual usage.
 ${ }^{20}$ Customers who installed multiple measures were categorized based on the measure that supplied the greatest impact on avoided cost.

[^17]: ${ }^{21}$ regardless of their program awareness

[^18]: 22 Taking free ridership into consideration
 23 but including participant spillover

[^19]: ${ }^{1}$ Cochran, W.G., Sampling Techniques, Third Edition, John Wiley \& Sons, 1977. pp 91-95.

[^20]: ${ }^{1}$ Although there are periods of time when lights are generally considered off, many lights are either accidentally or purposely left on during these periods. The effective hours of lighting operation captured during these off periods were applied using the operating factor term (the probability that lights operate during a particular time interval).

[^21]: ${ }^{2}$ These methodologies are described in a document titled "1994 Lighting Retrofit Express Program", submitted by Darrell Hall and Sam Cohen. They resulted in the values presented in the Annual Summary Report on Demand Side Management Programs in 1994 and 1995, Advice Filing 1800-G-A/1446-E-A.

[^22]: ${ }^{3}$ Rundquist, R., et al. 1993. "Calculating Lighting and HVAC Interactions", ASHRAE Journal, November 1993, pages 28-37.

[^23]: ${ }^{1}$ A preliminary analysis has concluded that the monthly usage and bill read date information in these two datasets was consistent.

[^24]: ${ }^{2}$ Dhrymes, P.J., Introductory Econometrics, Springer-Verlag, New York, 1978. pp 289-293.

[^25]: ${ }^{3}$ As mentioned before, an accurate determination of the installation date is very difficult due to inadequate data; however, a best-effort estimate was implemented based upon the analysis of the inspection dates and check issue dates from the tracking system in combination with customers' selfreported installation dates.

[^26]: ${ }^{4}$ All years mentioned in the SAE analysis, refer to a period that covers the last quarter of the previous year, and the first nine months of the current year.

[^27]: ${ }^{5}$ A variety of data censoring criteria were employed to identify potential outliers. Models were run without outliers, resulting in final results that were equivalent to running the model with nearly the entire sample. For this reason, the final model is based upon the largest sample possible that achieved a consistent result. In this way, data censoring criteria do not introduce a qualitative element to the final model results.
 ${ }^{6}$ Both observations have large impacts on the parameter estimates. If left in the model, the overall realization rates would be much higher and therefore the removal of these two observations represents a conservative approach to estimating program gross energy impacts.

[^28]: 7 This procedure assumes that the samples in different segments are independent and can be treated as strata in a stratified sampling.

